CEN CWA 15748-4

WORKSHOP July 2008

AGREEMENT

ICS 35.240.50

English version

Extensions for Financial Services (XFS) interface specification -
Release 3.10 - Part 4: Identification Card Device Class Interface
- Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,

France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

. — |

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITE EUROPEEN DE NORMALISATION
EUROPAISCHES KOMITEE FUR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2008 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 15748-4:2008 D/E/F

Page 2

CWA 15748-4:2008

Table of Contents

[o3 =T 4 4
IR | 214 o T 11T T) o 7
1.1 Background to Release 3.10.......cccciiiiiiiiiriririrrnrrssssssssss s s s ssssssss s s s s s s s s s s s s s s s ssssssssssssssssssssssssssnsns 7
1.2 XFS Service-Specific Programming..........ccccccccmimiiiiicssssmmresnisssssssssessssssssssssssssssessssssssssssssssssssas 7
2. Identification Card Readers and Writersc...ccccoiiiimmmmmmmmniniinniesssssssssssssseeennns 8
R T (5 =1 = o Vo 9
T SO 121 307 o .4 T T T 1o £ PRt 10
41 WFS _INF_IDC _STATUS ... s s s e e e e e 10
4.2 WFS_INF_IDC_CAPABILITIES...... . ssssssssssssssssssssnnsnnnnnnnns 15
4.3 WFS_INF_IDC_FORNM_LIST...ocooiuieiurtiecssssnssssessssssssssssssssssessssssssssssssssssssssssssssssssasssssassssnssses 19
4.4 WFS_INF_IDC_QUERY_FORM.....cceoosurecurrrmcssesssssssssssssssasssssssssssasssns 20
4.5 WFS_INF_IDC_QUERY_IFM_IDENTIFIER.......ccceeesueecurreecsssssasssssssssessssssssssssssssssnssssssassssnsassnen 21
C T = (=Y o U T 0T 4] .4 F- 1 g Lo L= 22
5.1 WFS_CMD_IDC_READ_TRACKocosieeiustricssssessasssssssssssasssssans 22
5.2 WFS_CMD_IDC_WRITE_TRACKooosteirrrrecssssesssssssssssssssssssssssssesssssssssssssssssssssasssssssssssassssasans 24
5.3 WFS_CMD_IDC_EJECT_CARD......ocoeureirsrrecassasssssas 26
5.4 WFS_CMD_IDC_RETAIN_CARD........cocsuriusrrecusssesssssssssssssssssssssssssssssssassssssassssssassessssssssassssasans 28
5.5 WFS_CMD_IDC_RESET_COUNTccoueuieetricasesessassssssssssssans 29
5.6 WFS_CMD _IDC_SETKEY ...oeiuiieiccusrieseeesscssssssssssssssssssssssssssssssssssssasssssssssssssassssssssssssasassssssns 30
5.7 WFS_CMD_IDC_READ_RAW DATA......cooioiierertricsssassssssns 31
5.8 WFS_CMD_IDC_WRITE_RAW _DATAooooiiererreicsssasssssnns 35
5.9 WFS_CMD _IDC_CHIP_IO u..eeeiececeseseseesscssasasassns 37
5.10 WFS_CMD _IDC_RESETcuititeiccsssesessasssssssssssssassssssssssssassssssns 39
5.11 WFS_CMD_IDC_CHIP_POWERccoeueuriuerrecssssrsssssssssssssssssssssssssssssssassssssssssssssssssassssssassssssas 40
5.12 WFS_CMD_IDC_PARSE_DATAooooiteeistrecsssssssssssssssssssssssssssssssssssssasssssssssssssssssassssssasssssans 41
5.13 WFS_CMD_IDC_SET_GUIDANCE_LIGHTceueeiurercrsrercssssesssssssssssssssssssssssssssssssssssssassssssans 42
5.14 WFS_CMD_IDC_POWER_SAVE_CONTROLccceosueierrrrcusrrecssssesssssssssssssssssssssssssssssssssssssss 43
I V7= 41 € 44
6.1 WFS_EXEE_IDC_INVALIDTRACKDATAccoc i cciemrreresessssssssmsssssssssssssssssssessssssssssnssssenssessnssnn 44
6.2 WFS_EXEE_IDC_MEDIAINSERTEDcccciiiiiiiiiiscrreressssssssssssese s s ssssssssssnssssssssssssnsssssssssessssnnn 45
6.3 WFS_SRVE_IDC_MEDIAREMOVEDeeeeeeeeeeennnnnsnnnnnnnnnnnnnnsnnnnnnnsnnnsnnnnnnnnnnnnnnnnnnnnnns 46
6.4 WFS_EXEE_IDC_MEDIARETAINEDeeeeeeeeeeeeeeenennnnnnnn e nn s s s s s s s s s nnnnnnn s n s mnmnmnnnna 47
6.5 WFS_EXEE_IDC_INVALIDMEDIAeeeeeeeeeececececeeeceeeeeen s enesnnennsnnns s s s s s s s s s nnnnnnnnnnnnnnnnnnnnn 48
6.6 WFS_SRVE_IDC_CARDACTION........ossssnsssssssnsssnsssssssnssssssssssssssssssssssssssssnnssnnnnnns 49
6.7 WFS_USRE_IDC_RETAINBINTHRESHOLD..........c.oomeececececececnceeneeenenennennnnesnnnnnnnnnnnnnnnnnnnne 50
6.8 WFS_SRVE_IDC_MEDIADETECTED........co o nssssssssssssssssssssssssssssssssssnssssnsnnnes 51

7.
8.

Page 3
CWA 15748-4:2008

6.9 WFS_SRVE_IDC_RETAINBINREMOVEDccceeeetrueimsrennsaesnssessssessssessssessssessssssssssssssesssssssssens 52
6.10 WFS_SRVE_IDC_RETAINBININSERTEDc.ccceceetrueimsretssesessessssssssesssssssssssssesssssssssesssssssssens 53
6.11 WFS_EXEE_IDC_INSERTCARD......cceceeutiitetracessenssessssessssessssssssssesessssessssssssssssssssssnsssssssssnsenes 54
6.12 WFS_SRVE_IDC_DEVICEPOSITIONcccceetiuemiresrraeesssesssseesssssssssssssssssssssssssssssssesssssssssssssssns 55
6.13 WFS_SRVE_IDC_POWER_SAVE_CHANGEccececsreitrerrsresnsseenssessssssssessssessssssssssssssssssanns 56

Form DescCription....... .o rrse s s s r s s e s s s s s e mmn s e s e mmn e e e 57

L0201 Lo (=Y ol | (= 60

Page 4
CWA 15748-4:2008

Foreword

This CWA is revision 3.10 of the XFS interface specification.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2007-11-29. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.10.

The CWA is published as a multi-part document, consisting of’

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference
Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference
Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference
Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface- Programmer's Reference
Parts 19 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference
Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class
Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class
Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class
Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class
Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Page 5
CWA 15748-4:2008

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class
Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class
Parts 48 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 3.0
(CWA 14050) to Version 3.10 (this CWA) - Programmer's Reference

Part 62: Printer Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.02 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.03 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA)
- Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.01 (CWA 14050) to
Version 3.10 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version
3.10 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.02 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cen.eu/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

This CEN Workshop Agreement is publicly available as a reference document from the National Members of
CEN : AENOR, AFNOR, ASRO, BDS, BSI, CSNI, CYS, DIN, DS, ELOT, EVS, IBN, IPQ, IST, LVS, LST, MSA,
MSZT, NEN, NSAI, ON, PKN, SEE, SIS, SIST, SFS, SN, SNV, SUTN and UNI.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be addressed
to the CEN Management Centre.

Page 6
CWA 15748-4:2008

Revision History:

1.0 May 24, 1993 Initial release of API and SPI specification

1.11 February 3, 1995 Separation of specification into separate documents for
API/SPI and service class definitions

2.0 November 11, 1996 Updated release encompassing self-service environment Chip
Card handling inserted.
3.0 October 18, 2000 Eliminate reference to Registry as a form of implementation

for threshold value in
WFS_USRE_IDC RETAINBINTHRESHOLD command.

Clarify that Form Definition attributes are not required in any
mandatory order.

Clarify WFS_IDC DEVBUSY meaning.
Add WFS_CMD _IDC RESET command.
High Coercivity enhancements

For a detailed description see CWA 14050-18:2000
IDC migration from version 2.0 to version 3.0.

3.02 May 21, 2003 Updated to handle latching smart cards within a Smart/Dip
device and devices with permanently connected chip cards.

For a detailed description see CWA 14050-26:2003 IDC
migration from version 3.0 to version 3.02.

3.10 November 29, 2007 For a description of changes see CWA 15748-63:2007 IDC
Migration from Version 3.02 (see CWA 14050) to Version
3.10.

Page 7
CWA 15748-4:2008

1. Introduction

1.1 Background to Release 3.10

The CEN/ISSS XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor
software interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are
developed within the CEN/ISSS (European Committee for Standardization/Information Society Standardization
System) Workshop environment. CEN/ISSS Workshops aim to arrive at a European consensus on an issue that can
be published as a CEN Workshop Agreement (CWA).

The CEN/ISSS XFS Workshop encourages the participation of both banks and vendors in the deliberations required
to create an industry standard. The CEN/ISSS XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.10 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the XFS specification has been
prompted by a series of factors.

There has been a technical imperative to extend the scope of the existing specification to include new devices, such
as the Barcode Reader, Card Dispenser and Item Processing Module.

Similarly, there has also been pressure, through implementation experience and additional requirements, to extend
the functionality and capabilities of the existing devices covered by the specification.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP COMMAND error is returned to the calling application. An
example would be a request from an application to a cash dispenser to dispense coins; the Service Provider
recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS _ERR INVALID COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP COMMAND error
returns to make decisions as to how to use the service.

Page 8
CWA 15748-4:2008

2. ldentification Card Readers and Writers

This section describes the functions provided by a generic identification card reader/writer service (IDC). These
descriptions include definitions of the service-specific commands that can be issued, using the WFSAsyncExecute,
WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This service allows for the operation of the following categories of units:
e motor driven card reader/writer
e pull through card reader (writing facilities only partially included)
e dip reader
e contactless chip card readers
e permanent chip card readers (each chip is accessed through a unique logical service)
The following tracks/chips and the corresponding international standards are taken into account in this document:

e Track 1 ISO 7811

e Track2 ISO 7811

e Track3 ISO 7811 /1SO 4909
e Front Track 1 (JIS 1) Japan

e Watermark Sweden

e Chip (contacted) ISO 7816
e Chip (contactless) ISO 10536.

National standards like Transac for France are not considered, but can be easily included via the forms mechanism
(see Section 7, Form Definition).

In addition to the pure reading of the tracks mentioned above, security boxes can be used via this service to check
the data of writable tracks for manipulation. These boxes (such as CIM or MM) are sensor-equipped devices that
are able to check some other information on the card and compare it with the track data.

Persistent values are maintained through power failures, open sessions, close session and system resets.

When the service controls a permanently connected chip card, WFS_ERR _UNSUPP_COMMAND will be returned
to all commands except WFS _INF IDC _STATUS, WFS INF IDC_CAPABILITIES,
WFS _CMD_IDC CHIP POWER, WFS _CMD IDC CHP_ IO and WFS_CMD_IDC RESET.

The following defines the roles and responsibilities of an application within EMV:
e EMV Level 2 interaction is handled above the XFS API
e EMV Level 1 interaction is handled below the XFS API

All EMV status information that is defined as a Level 1 responsibility in the EMV specification should be handled
below the XFS APL

Page 9
CWA 15748-4:2008

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.10

Page 10

CWA 15748-4:2008
4. Info Commands

41 WFS_INF_IDC_STATUS

Description

Input Param

Output Param

This command reports the full range of information available, including the information that is
provided either by the Service Provider or, if present, by any of the security modules. In addition
to that, the number of cards retained is transmitted for motor driven card reader/writer (for devices
of the other categories this number is always set to zero).

None.

LPWEFSIDCSTATUS IpStatus;

typedef struct _wfs_idc_status

WORD fwDevice;

WORD fwMedia;

WORD fwRetainBin;

WORD fwSecurity;

USHORT usCards;

WORD fwChipPower;

LPSTR lpszExtra;

DWORD deuidLightS[WFS_IDC_GUIDLIGHTS_SIZE];
WORD fwChipModule;

WORD fwMagReadModule;

WORD fwMagWriteModule;

WORD fwFrontImageModule;

WORD fwBackImageModule;

WORD wDevicePosition;

USHORT usPowerSaveRecoveryTime;

} WFSIDCSTATUS, *LPWFSIDCSTATUS;

fwDevice

Specifies the state of the ID card device as one of the following flags:

Value

Meaning

WEFS_IDC_DEVONLINE

WFS_IDC_DEVOFFLINE

WFS_IDC_DEVPOWEROFF

WEFS _IDC DEVNODEVICE

WEFS IDC_ DEVHWERROR

WFS_IDC_DEVUSERERROR

WFS_IDC_DEVBUSY

WFS _IDC_DEVFRAUDATTEMPT

The device is present, powered on and online
(i.e. operational, not busy processing a
request and not in an error state).

The device is offline (e.g. the operator has
taken the device offline by turning a switch
or pulling out the device).

The device is powered off or physically not
connected.

There is no device intended to be there; e.g.
this type of self service machine does not
contain such a device or it is internally not
configured.

The device is present but inoperable due to a
hardware fault that prevents it from being
used.

The device is present but a person is
preventing proper device operation. The
application should suspend the device
operation or remove the device from service
until the Service Provider generates a device
state change event indicating the condition
of the device has changed e.g. the error is
removed (WFS IDC DEVONLINE) or a
permanent error condition has occurred
(WFS_IDC_DEVHWERROR).

The device is busy and unable to process an
Execute command at this time.

The device is present but has detected a
fraud attempt.

fwMedia

Page 11
CWA 15748-4:2008

Specifies the state of the ID card unit as one of the following values:

Value

Meaning

WES IDC MEDIAPRESENT

WFS_IDC_MEDIANOTPRESENT
WFS_IDC_MEDIAJAMMED

WFS_IDC_MEDIANOTSUPP

WES IDC_MEDIAUNKNOWN

WFS _IDC_MEDIAENTERING

WFS_IDC_MEDIALATCHED

fwRetainBin

Media is present in the device, not in the
entering position and not jammed. On the
latched dip device, this indicates that the
card is present in the device and the card is
unlatched.

Media is not present in the device and not at
the entering position.

Media is jammed in the device; operator
intervention is required.

Capability to report media position is not
supported by the device (e.g. a typical swipe
reader).

The media state cannot be determined with
the device in its current state (e.g. the value
of fwDevice is

WFS IDC DEVNODEVICE,

WFS IDC DEVPOWEROFF,

WFS _IDC_DEVOFFLINE, or
WFS_IDC_DEVHWERROR).

Media is at the entry/exit slot of a motorized
device.

Media is present & latched in a latched dip
card unit. This means the card can be used
for chip card dialog.

Specifies the state of the ID card unit retain bin as one of the following values:

Value

Meaning

WEFS _IDC RETAINBINOK
WEFS IDC_RETAINNOTSUPP

WES IDC RETAINBINFULL
WFS_IDC_RETAINBINHIGH

WFS _IDC_RETAINBINMISSING
fwSecurity

The retain bin of the ID card unit is not full.
The ID card unit does not support retain
capability.

The retain bin of the ID card unit is full.
The retain bin of the ID card unit is nearly
full.

The retain bin of the ID card unit is missing.

Specifies the state of the security unit as one of the following values:

Value

Meaning

WFS_IDC_SECNOTSUPP
WFS_IDC_SECNOTREADY

WFS_IDC_SECOPEN

usCards

No security module is available.

The security module is not ready to process
cards or is inoperable.

The security module is open and ready to
process cards.

The number of cards retained; applicable only to motor driven ID card units for non-motorized
card units this value is zero. This value is persistent it is reset to zero by the

WFS CMD IDC RESET COUNT command.

fwChipPower

Specifies the state of the chip controlled by this service. Depending on the value of fwType within
the WFS_INF _IDC CAPABILITIES structure, this can either be the chip on the currently
inserted user card or the chip on a permanently connected chip card. The state of the chip is one of

the following flags:

Page 12
CWA 15748-4:2008

Value Meaning

WEFS_IDC_CHIPONLINE The chip is present, powered on and online
(i.e. operational, not busy processing a
request and not in an error state).

WFS IDC CHIPPOWEREDOFF The chip is present, but powered off (i.e. not
contacted).

WFS_IDC_CHIPBUSY The chip is present, powered on, and busy
(unable to process an Execute command at
this time).

WEFS IDC_CHIPNODEVICE A card is currently present in the device, but
has no chip.

WEFS _IDC_CHIPHWERROR The chip is present, but inoperable due to a

hardware error that prevents it from being
used (e.g. MUTE, if there is an unresponsive
card in the reader).

WES IDC CHIPNOCARD There is no card in the device.

WES_IDC_CHIPNOTSUPP Capability to report the state of the chip is
not supported by the ID card unit device.

WES IDC_CHIPUNKNOWN The state of the chip cannot be determined

with the device in its current state.

IpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

dwGuidLights [...]

Specifies the state of the guidance light indicators. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_IDC GUIDLIGHTS MAX.

Specifies the state of the guidance light indicator as
WFS IDC_GUIDANCE NOT AVAILABLE, WFS IDC GUIDANCE_OFF or a combination
of the following flags consisting of one type B, and optionally one type C.

Value Meaning Type
WEFS IDC_GUIDANCE NOT AVAILABLE The status is not available. A
WEFS IDC_GUIDANCE OFF The light is turned off. A
WEFS IDC GUIDANCE SLOW_FLASH The light is blinking slowly. B
WEFS IDC _GUIDANCE MEDIUM FLASH The light is blinking medium B
frequency.
WEFS_IDC_GUIDANCE QUICK FLASH The light is blinking quickly. B
WFS IDC GUIDANCE CONTINUOUS The light is turned on B
continuous (steady).

WFS IDC GUIDANCE RED The light is red. C
WFS IDC GUIDANCE GREEN The light is green. C
WFS IDC GUIDANCE YELLOW The light is yellow. C
WEFS_IDC_GUIDANCE BLUE The light is blue. C
WEFS IDC_GUIDANCE CYAN The light is cyan. C
WEFS IDC_GUIDANCE MAGENTA The light is magenta. C
WEFS_IDC _GUIDANCE WHITE The light is white. C

dwGuidLights [WFS IDC GUIDANCE CARDUNIT]

Specifies the state of the guidance light indicator on the card unit.

JwChipModule

Specifies the state of the chip card module reader as one of the following values:
Value Meaning
WFS IDC CHIPMODOK The chip card module is in a good state.
WFS IDC CHIPMODINOP The chip card module is inoperable.
WES IDC_CHIPMODUNKNOWN The state of the chip card module cannot be

determined.

WES_IDC_CHIPMODNOTSUPP

JfwMagReadModule

Page 13
CWA 15748-4:2008

Reporting the chip card module status is not
supported.

Specifies the state of the magnetic card reader as one of the following values:

Value

Meaning

WES IDC_ MAGMODOK
WES IDC_ MAGMODINOP
WFS_IDC_ MAGMODUNKNOWN

WFS_IDC_MAGMODNOTSUPP

fwMagWriteModule

The magnetic card reading module is in a
good state.

The magnetic card reading module is
inoperable.

The state of the magnetic reading module
cannot be determined.

Reporting the magnetic reading module
status is not supported.

Specifies the state of the magnetic card writer as one of the following values:

Value

Meaning

WFS_IDC_MAGMODOK
WFS_IDC_MAGMODINOP
WFS_IDC_MAGMODUNKNOWN

WFS_IDC_MAGMODNOTSUPP

fwFrontImageModule

The magnetic card writing module is in a
good state.

The magnetic card writing module is
inoperable.

The state of the magnetic card writing
module cannot be determined.

Reporting the magnetic writing module
status is not supported.

Specifies the state of the front image reader as one of the following values:

Value

Meaning

WFS_IDC_IMGMODOK
WFS_IDC_IMGMODINOP
WFS_IDC_IMGMODUNKNOWN

WES IDC IMGMODNOTSUPP

JfwBackimageModule

The front image reading module is in a good
state.

The front image reading module is
inoperable.

The state of the front image reading module
cannot be determined.

Reporting the front image reading module
status is not supported.

Specifies the state of the back image reader as one of the following values:

Value

Meaning

WFS_IDC_IMGMODOK
WFS_IDC_IMGMODINOP
WFS_IDC_IMGMODUNKNOWN

WFS_IDC_IMGMODNOTSUPP

wDevicePosition

The back image reading module is in a good
state.

The back image reading module is
inoperable.

The state of the back image reading module
cannot be determined.

Reporting the back image reading module
status is not supported.

Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS IDC DEVICENOTINPOSITION, fiwDevice can
have any of the values defined above (including WFS_IDC_DEVONLINE or

WEFS _IDC_DEVOFFLINE). If the device is not in its normal operating position (i.e.
WEFS_IDC_DEVICEINPOSITION) then media may not be presented through the normal
customer interface. This value is one of the following values:

Page 14

CWA 15748-4:2008

Error Codes

Comments

Value Meaning

WEFS _IDC_DEVICEINPOSITION The device is in its normal operating
position, or is fixed in place and cannot be
moved.

WFS IDC DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS IDC_DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WEFS IDC_DEVICEPOSNOTSUPP The physical device does not have the

capability of detecting the position.

usPowerSaveRecoveryTime

Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

Applications which require or expect specific information to be present in the [pszExtra parameter
may not be device or vendor-independent.

The fwDevice field can indicate that the device is still available (i.e. WFS_IDC DEVONLINE)
even if one of the detailed device status fields (fwSecurity, fwChipModule, fwMagReadModule or
fwMagWriteModule) indicates that there is a problem with one or more modules. In this case, only
the functionality provided by modules that do not have a fault should be used.

In the case where communications with the device has been lost, the fiwDevice field will report
WEFS IDC_DEVPOWEROFF when the device has been removed or

WFS IDC_DEVHWERROR if the communications are unexpectedly lost. All other fields should
contain a value based on the following rules and priority:

1. Report the value as unknown.
2. Report the value as a general h/w error.

3. Report the value as the last known value.

4.2 WFS_INF_IDC_CAPABILITIES

Page 15

CWA 15748-4:2008

Description This command is used to retrieve the capabilities of the ID card unit.

Input Param None.

Output Param LPWFSIDCCAPS IpCaps;

typedef struct _wfs_idc_ caps

WORD wClass;

WORD fwType;

BOOL bCompound;

WORD fwReadTracks;

WORD fwWriteTracks;

WORD fwChipProtocols;

USHORT usCards;

WORD fwSecType;

WORD fwPowerOnOption;

WORD fwPowerOffOption;

BOOL bFluxSensorProgrammable;

BOOL bReadWriteAccessFollowingEject;
WORD fwWriteMode;

WORD fwChipPower;

LPSTR lpszExtra;

WORD fwDIPMode;

LPWORD lpwMemoryChipProtocols;

DWORD deuidLightS[WFS_IDC_GUIDLIGHTS_SIZE];
WORD fwEjectPosition;

BOOL bPowerSaveControl;

} WFSIDCCAPS, *LPWFSIDCCAPS;

wClass

Specifies the logical service class as WFS_SERVICE CLASS IDC.

SwIype

Specifies the type of the ID card unit as one of the following values:

Value

Meaning

WFS_IDC_TYPEMOTOR
WFS_IDC_TYPESWIPE

WFS_IDC_TYPEDIP
WFS_IDC_TYPECONTACTLESS

WES IDC TYPELATCHEDDIP

WES IDC TYPEPERMANENT

bCompound

The ID card unit is a motor driven card unit.
The ID card unit is a swipe (pull-through)
card unit.

The ID card unit is a dip card unit. This dip
type is not capable of latching cards entered.
The ID card unit is a contactless card unit,
i.e. no insertion of the card is required.

The ID card unit is a latched dip card unit.
This device type is used when a dip IDC
device supports chip communication. The
latch ensures the consumer cannot remove
the card during chip communication. Any
card entered will automatically latch when a
request to initiate a chip dialog is made (via
the WFS_CMD_IDC READ RAW DATA
command). The

WFS CMD _ IDC EJECT CARD command
is used to unlatch the card.

The ID card unit is dedicated to a
permanently housed chip card (no user
interaction is available with this type of
card).

Specifies whether the logical device is part of a compound physical device.

fwReadTracks

Specifies the tracks that can be read by the ID card unit as a combination of the following flags:

Page 16

CWA 15748-4:2008

Value Meaning

WEFS IDC_NOTSUPP The ID card unit can not access any track.

WEFS IDC TRACKI1 The ID card unit can access track 1.

WES IDC_TRACK2 The ID card unit can access track 2.

WES IDC TRACK3 The ID card unit can access track 3.

WFS IDC TRACK WM The ID card unit can access the Swedish
Watermark track.

WEFS IDC FRONT TRACK 1 The ID card unit can access the front track 1.
In some countries this track is known as JIS
II track.

WEFS IDC FRONTIMAGE The ID card unit can read the front image of
a card.

WEFS IDC BACKIMAGE The ID card unit can read the back image of
a card.

fwWriteTracks

Specifies the tracks that can be written by the ID card unit (as a combination of the flags specified
in the description of fwReadTracks except WFS_IDC_TRACK WM).

fwChipProtocols
Specifies the chip card protocols that are supported by the Service Provider as a combination of
the following flags:

Value Meaning

WEFS_IDC_NOTSUPP The ID card unit can not handle chip cards.

WES IDC_CHIPTO The ID card unit can handle the T=0
protocol.

WEFES IDC _CHIPT1 The ID card unit can handle the T=1
protocol.

WES_IDC_CHIP_PROTOCOL NOT REQUIRED
The ID card unit is capable of
communicating with a chip card without
requiring the application to specify any

protocol.

usCards
Specifies the maximum numbers of cards that the retain bin can hold (zero if not available).
fwSecType
Specifies the type of security module used as one of the following values:

Value Meaning

WFS IDC SECNOTSUPP Device has no security module.

WEFS IDC_SECMMBOX Security module of device is MMBox.

WEFS IDC _SECCIM&86 Security module of device is CIM86.
fwPowerOnOption

Specifies the power-on capabilities of the device hardware as one of the following values
(applicable only to motor driven ID card units):

Value Meaning

WEFS IDC NOACTION No power on actions are supported by the
device.

WEFS IDC EJECT The card will be ejected on power-on (or off,
see fwPowerOffOption below).

WEFS IDC_RETAIN The card will be retained on power-on (off).

WFS IDC EJECTTHENRETAIN The card will be ejected for a specified time

on power-on (off), then retained if not taken.
The time for which the card is ejected is
vendor dependent.

WEFS _IDC_READPOSITION The card will be moved into the read
position on power-on (off).

fwPowerOffOption
Specifies the power-off capabilities of the device hardware, as one of the flags specified for
fwPowerOnOption; applicable only to motor driven ID card units.

Page 17
CWA 15748-4:2008

bFluxSensorProgrammable
Specifies whether the Flux Sensor on the card unit is programmable, this can either be TRUE or
FALSE.

bReadWriteAccessFollowingEject
Specifies whether a card may be read or written after having been pushed to the exit slot with an
eject command. The card will be retracted back into the IDC.

fwWriteMode
A combination of the following flags specify the write capabilities, with respect to whether the
device can write low coercivity (loco) and/or high coercivity (hico) magnetic stripes:

Value Meaning

WFS _IDC_NOTSUPP Does not support writing of magnetic stripes.
WEFS IDC_LOCO Supports writing of loco magnetic stripes.
WEFS_IDC _HICO Supports writing of hico magnetic stripes.
WEFS IDC_AUTO Service Provider is capable of automatically

determining whether loco or hico magnetic
stripes should be written.

fwChipPower
Specifies the capabilities of the ID card unit (in relation to the user or permanent chip controlled
by the service), for chip power management as a combination of the following flags.

Value Meaning

WEFS_IDC_NOTSUPP The ID card unit can not handle chip power
management.

WEFS IDC_CHIPPOWERCOLD The ID card unit can power on the chip and
reset it (Cold Reset).

WEFS IDC_CHIPPOWERWARM The ID card unit can reset the chip (Warm
Reset).

WEFS IDC_CHIPPOWEROFF The ID card unit can power off the chip.

IpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

JwDIPMode
Specifies whether data track data is read on entry or exit from the dip card unit as one of the
following flags:

Value Meaning

WEFS IDC_NOTSUPP The ID card unit is not a dip type.

WEFS IDC DIP_EXIT The dip ID card unit reads card track data on
exit only.

WES IDC DIP_ENTRY The dip ID card unit reads card track data on
entry only.

WEFS IDC DIP_ENTRY_ EXIT The dip ID card unit reads card track data
both on entry and exit.

WEFS IDC _DIP_ UNKNOWN Unknown whether track data is read on entry
or exit.

IpwMemoryChipProtocols

Pointer to a zero terminated array that specifies the memory card protocols that are supported by
the Service Provider as an array of constants. If this parameter is NULL then the Service Provider
does not support any memory card protocols. Valid Memory Card Identifiers are:

Value Meaning

WEFS IDC_MEM SIEMENS4442 The device supports the Siemens 4442 Card
Protocol (also supported by the Gemplus
GPM2K card).

WEFS IDC_MEM_ GPMS896 The device supports the Gemplus GPM 896

Card Protocol.

Page 18
CWA 15748-4:2008

dwGuidLights [...]

Specifies which guidance lights are available. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_IDC GUIDLIGHTS MAX.

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B) and colors (type C) that the guidance light indicator is capable of
handling. If the guidance light indicator only supports one color then no value of type C is
returned. A value of WFS IDC _GUIDANCE NOT AVAILABLE indicates that the device has
no guidance light indicator or the device controls the light directly with no application control
possible.

Value Meaning Type

WEFS IDC_GUIDANCE NOT AVAILABLE There is no guidance light control A
available at this position.

WEFS IDC_GUIDANCE OFF The light can be off. B
WES IDC GUIDANCE SLOW_FLASH The light can blink slowly. B
WFS IDC GUIDANCE MEDIUM FLASH The light can blink medium B
frequency.
WFS IDC GUIDANCE QUICK FLASH The light can blink quickly. B
WFS IDC GUIDANCE CONTINUOUS The light can be B
continuous (steady).
WEFS IDC_GUIDANCE RED The light can be red. C
WEFS IDC_GUIDANCE GREEN The light can be green. C
WEFS IDC_GUIDANCE YELLOW The light can be yellow. C
WEFS IDC _GUIDANCE BLUE The light can be blue. C
WEFS IDC_GUIDANCE CYAN The light can be cyan. C
WEFS IDC_GUIDANCE MAGENTA The light can be magenta. C
WFS IDC GUIDANCE WHITE The light can be white. C

dwGuidLights [WFS IDC GUIDANCE _CARDUNIT]
Specifies whether the guidance light indicator on the card unit is available.

JfwEjectPosition
Specifies the target position that is supported for the eject operation, as a combination of the

following flags:
Value Meaning
WEFS _IDC_EXITPOSITION The device can eject a card to the exit
position, from which the user can remove it.
WEFS IDC_TRANSPORTPOSITION The device can eject a card to the transport
just behind the exit position, from which the
user can not remove it. The device which
supports this flag must also support the
WFS _IDC_EXITPOSITION flag.
bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the [pszExtra parameter
may not be device or vendor-independent.

Page 19
CWA 15748-4:2008

4.3 WFS_INF_IDC_FORM_LIST

Description This command is used to retrieve the list of forms available on the device.
Input Param None.
Output Param LPSTR IpszFormList;

IpszFormList
Pointer to a list of null-terminated form names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

Page 20
CWA 15748-4:2008

4.4 WFS_INF_IDC_QUERY_FORM

Description This command is used to retrieve details of the definition of a specified form.
Input Param LPSTR IpszFormName;

IpszFormName
Points to the null-terminated form name on which to retrieve details.

Output Param LPWFSIDCFORM IpForm;

typedef struct wfs idc_ form

LPSTR lpszFormName ;

char cFieldSeparatorTrackl;
char cFieldSeparatorTrack?2;
char cFieldSeparatorTrack3;
WORD fwAction;

LPSTR lpszTracks;

BOOL bSecure;

LPSTR lpszTracklFields;
LPSTR lpszTrack2Fields;
LPSTR lpszTrack3Fields;

} WFSIDCFORM, *LPWFSIDCFORM;

IpszFormName
Specifies the null-terminated name of the form.

cFieldSeparatorTrackl
Specifies the value of the field separator of Track 1.

cFieldSeparatorTrack2
Specifies the value of the field separator of Track 2.

cFieldSeparatorTrack3
Specifies the value of the field separator of Track 3.

JfwAction
Specifies the form action; can be one of the following flags:

Value Meaning

WES IDC ACTIONREAD The form reads the card.
WEFS IDC_ACTIONWRITE The form writes the card.

IpszTracks
Specifies the read algorithm or the track to write.

bSecure
Specifies whether or not to do a security check.

IpszTrackl Fields
Pointer to a list of null-terminated field names of Track 1, with the final name terminating with
two null characters.

IpszTrack2Fields
Pointer to a list of null-terminated field names of Track 2, with the final name terminating with
two null characters.

IpszTrack3Fields
Pointer to a list of null-terminated field names of Track 3, with the final name terminating with
two null characters.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR IDC_ FORMNOTFOUND The specified form cannot be found.
WEFS_ERR IDC FORMINVALID The specified form is invalid.

Comments None.

Page 21
CWA 15748-4:2008

4.5 WFS_INF_IDC_QUERY_IFM_IDENTIFIER

Description

Input Param

Output Param

Error Codes

Comments

This command is used to retrieve the complete list of registration authority Interface Module
(IFM) identifiers. The primary registration authority is EMVCo but other organizations are also
supported for historical or local country requirements.

New registration authorities may be added in the future so applications should be able to handle
the return of new (as yet undefined) IFM identifiers.

None.
LPWEFSIDCIFMIDENTIFIER *IppIlFMIdentifier;

Pointer to a NULL terminated array of pointers to data structures. There is one array element for
each IFM identifier supported by the Service Provider (in no particular order). If there is no IFM
identifier available for one of the defined IFM authorities then no element is returned in the array
for that authority. If there are no IFM identifiers for the device then the output parameter
IppIFMldentifier will be NULL.

typedef struct wfs_idc ifm identifier

WORD wIFMAuthority;
LPSTR lpszIFMIdentifier;
} WFSIDCIFMIDENTIFIER, *LPWFSIDCIFMIDENTIFIER;
wIFMAuthority
Specifies the IFM authority that issued the IFM identifier:
Value Meaning
WEFS_IDC IFMEMV The Level 1 Type Approval IFM identifier
assigned by EMVCo.
WEFS_IDC IFMEUROPAY The Level 1 Type Approval IFM identifier
assigned by Europay.
WEFS_IDC_IFMVISA The Level 1 Type Approval IFM identifier
assigned by VISA.
WEFS_IDC IFMGIECB The IFM identifier assigned by GIE Cartes
Bancaires.
IpszIFMIdentifier

Returns an ASCII string containing the IFM Identifier of the chip card reader (or [FM) as
assigned by the specified authority.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

If this command is not supported then this does not necessarily mean that the device is not
certified by one or more certification authorities.

Page 22

CWA 15748-4:2008
5. Execute Commands

51 WFS_CMD_IDC_READ_ TRACK

Description

Input Param

Output Param

Error Codes

For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, the
tracks are read immediately as described in the form specified by the lpstrFormsName parameter.

If no card has been inserted, and for all other categories of card readers, the ID card unit waits for
the period of time specified in the WFSExecute call for a card to be either inserted or pulled
through. Again the next step is reading the tracks specified in the form (see Section 7, Form
Definition, for a more detailed description of the forms mechanism). When the SECURE tag is
specified in the associated form, the results of a security check via a security module (i.e. MM,
CIMB6) are specified and added to the track data.

The WFS_EXEE IDC INSERTCARD event will be generated when there is no card in the card
reader and the device is ready to accept a card.

If the security check fails however this should not stop valid data being returned. The error

WFS _ERR IDC SECURITYFAIL will be returned if the form specifies only security data to be
read and the security check could not be executed, in all other cases WFS_SUCCESS will be
returned with the security field of the output parameter set to the relevant value including
WFS_IDC_SEC_HWERROR.

For non-motorized Card Readers which read track data on card exit, the
WFS_ERR INVALID DATA error code is returned when a call to
WFS CMD IDC READ RAW_DATA is made to read both track data and chip data.

LPSTR IpstrFormName;

IpstrFormName
Points to the name of the form that defines the behavior for the reading of tracks (see Section 7,
Form Definition).

LPSTR IpstrTrackData;

IpstrTrackData
Points to the data read successfully from the selected tracks (and value of security module if
available).

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC MEDIAJAM The card is jammed. Operator intervention is
required.

WEFS_ERR IDC SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error. Operator
intervention is required.

WFS ERR IDC INVALIDDATA The read operation specified by the forms
definition could not be completed
successfully due to invalid track data. This is
returned if all tracks in an ‘or’ (|) operation
cannot be read or if any track in an ‘and’ (&)
operation cannot be read. IpstrTrackData
points to data from the successfully read
tracks (if any). One
WFS_EXEE IDC INVALIDTRACKDAT
A execute event is generated for each
specified track which could not be read
successfully. See the form description for the
rules defining how tracks are specified.

Events

Comments

Page 23
CWA 15748-4:2008

WFS ERR IDC NOMEDIA The card was removed before completion of
the read action (the event
WFS_EXEE IDC _MEDIAINSERTED has
been generated). For motor driven devices,
the read is disabled; i.e. another command
has to be issued to enable the reader for card

entry.

WFS _ERR IDC INVALIDMEDIA No track found; card may have been inserted
or pulled through the wrong way.

WFS_ERR IDC FORMNOTFOUND The specified form can not be found.

WFS _ERR IDC FORMINVALID The specified form definition is invalid (e.g.
syntax error).

WEFS _ERR IDC SECURITYFAIL The security module failed reading the cards
security sign.

WFS ERR IDC CARDTOOSHORT The card that was inserted is too short. When
this error occurs the card remains at the exit
slot.

WFS_ERR IDC CARDTOOLONG The card that was inserted is too long. When
this error occurs the card remains at the exit
slot.

In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning

WFS _EXEE IDC INVALIDTRACKDATA One event is generated for each blank track
(no data) or invalid track (either data error
reading the track or the data does not
conform to the specified form definition).

WFS _EXEE IDC MEDIAINSERTED This event is generated when a card is
detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being read.

WEFS_SRVE IDC MEDIAREMOVED This event is generated when a card is
removed before completion of a read
operation.

WFS EXEE IDC INVALIDMEDIA The user is attempting to insert the media in

the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

WEFS_EXEE IDC INSERTCARD Device is ready to accept a card from the
user.

The track data is preceded by the keyword for the track, separated by a “:’. The field data is
always preceded by the corresponding keyword, separated by a ‘=". The fields are separated by
0x00. The data of the different tracks is separated by an additional 0x00. The end of the buffer is
marked by another additional 0x00 (see example below). Data encoding is defined in Section 7,
Form Definition.

Example of IpstrTrackData:
TRACK2:ALL=47.\0\0TRACK3:MII=59\0PAN=500..\0\0\0

Page 24

CWA 15748-4:2008

52 WFS_CMD_IDC_WRITE_TRACK

Description

Input Param

For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the
data is written to the track as described in the form specified by the [pstrFormName parameter,
and the other parameters.

If no card has been inserted, and for all other categories of devices, the ID card unit waits for the
period of time specified in the WFSExecute call for a card to be either inserted or pulled through.
The next step is writing the data defined by the form and the parameters to the respective track
(see Section 7, Form Definition, for a more detailed description of the forms mechanism).

This procedure is followed by data verification.

The WFS_EXEE IDC INSERTCARD event will be generated when there is no card in the card
reader and the device is ready to accept a card.

If power fails during a write the outcome of the operation will be vendor specific, there is no
guarantee that the write will have succeeded.

LPWFSIDCWRITETRACK lpWriteTrack;

typedef struct wfs_idc write_ track

{

LPSTR lpstrFormName ;
LPSTR lpstrTrackData;
WORD fwWriteMethod;
} WFSIDCWRITETRACK, *LPWFSIDCWRITETRACK;
IpstrFormName
Points to the name of the form to be used.
IpstrTrackData
Points to the data to be used in the form.
fwWriteMethod
Indicates whether a low coercivity or high coercivity magnetic stripe is being written.
Value Meaning
WEFS _IDC LOCO Low coercivity magnetic stripe is being
written.
WEFS_IDC HICO High coercivity magnetic stripe is being
written.
WEFS IDC_AUTO Service Provider will determine whether low

or high coercivity stripe is to be written.

Output Param None.

Error Codes

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC MEDIAJAM The card is jammed. Operator intervention is
required.

WFS _ERR IDC SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error. Operator
intervention is required.

WFS_ERR IDC NOMEDIA The card was removed before completion of
the write action (the event
WFS_EXEE IDC_MEDIAINSERTED has
been generated). For motor driven devices,
the write is disabled; i.e. another command
has to be issued to enable the reader for card

entry.
WFS _ERR IDC INVALIDDATA An error occurred while writing the track.
WFS _ERR IDC DATASYNTAX The syntax of the data pointed to by

IpstrTrackData is in error, or does not
conform to the form definition.

Events

Comments

Page 25
CWA 15748-4:2008

WFS ERR IDC INVALIDMEDIA No track found; card may have been inserted
or pulled through the wrong way.

WFS ERR IDC_ FORMNOTFOUND The specified form can not be found.

WEFS_ERR IDC FORMINVALID The specified form definition is invalid (e.g.
syntax error).

WFS ERR IDC WRITE METHOD The fwWriteMethod value is inconsistent
with device capabilities.

WFS ERR IDC_ CARDTOOSHORT The card that was inserted is too short. When
this error occurs the card remains at the exit
slot.

WFS_ERR IDC CARDTOOLONG The card that was inserted is too long. When
this error occurs the card remains at the exit
slot.

In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning

WFS _EXEE IDC INVALIDTRACKDATA One event is generated for each blank track
(no data) or invalid track (either data error
reading the track or the data does not
conform to the specified form definition).

WFS _EXEE IDC MEDIAINSERTED This event is generated when a card is
detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being written.

WFS SRVE IDC MEDIAREMOVED This event is generated when a card is
removed before completion of a write
operation.

WFS _EXEE IDC INVALIDMEDIA The user is attempting to insert the media in

the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

WFS _EXEE IDC INSERTCARD Device is ready to accept a card from the
user.

The field data is always preceded by the corresponding keyword, separated by an ‘=’. This
keyword could be one of the fields defined in the form or the predefined keyword ‘ALL’. Fields
are separated by 0x00. The end of the buffer is marked with an additional 0x00. (See the example
below and Section 7, Form Definition.). This specification means that only one track can be
written in the same command. This is a fundamental capability of an ID card unit; thus if a write
request is received by a device with no write capability, the WFS ERR_UNSUPP _COMMAND
error is returned.

Example of IpstrTrackData:
RETRYCOUNT=3\0DATE=3132\0\0

Page 26

CWA 15748-4:2008

5.3 WFS_CMD_IDC_EJECT_CARD

Description

Input Param

This command is only applicable to motor driven card readers and latched dip card readers. For
motorized card readers the default operation is that the card is driven to the exit slot from where
the user can remove it. After successful completion of this command, a service event message is
generated to inform the application when the card is taken. The card remains in position for
withdrawal until either it is taken or another command is issued that moves the card.

For latched dip readers, this command causes the card to be unlatched (if not already unlatched),
enabling removal.

After successful completion of this command, a WFS_SRVE IDC MEDIAREMOVED event is
generated to inform the application when the card is taken.

LPWEFSIDCEJECTCARD IpEjectCard;

typedef struct wfs_idc_eject card

WORD wEjectPosition;
} WEFSIDCEJECTCARD, *LPWFSIDCEJECTCARD;

wEjectPosition
Specifies the destination of the card ejection for motorized card readers. Possible values are one
of the following:

Value Meaning

WES_IDC_EXITPOSITION The card will be transferred to the exit slot
from where the user can remove it. In the
case of a latched dip the card will be
unlatched, enabling removal.

WEFS IDC_TRANSPORTPOSITION The card will be transferred to the transport
just behind the exit slot. If a card is already
at this position then WFS_SUCCESS will be
returned. Another
WFS CMD IDC EJECT CARD command
is required with the wEjectPosition set to
WFS IDC _EXITPOSITION in order to
present the card to the user for removal.

If [pEjectCard is a NULL pointer, the card will be transferred to the exit slot from where the user
can remove it. In the case of a latched dip the card will be unlatched, enabling removal. This
action is the same as when WFS IDC EXITPOSITION is specified for wEjectPosition.

Output Param None.

Error Codes

Events

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC MEDIAJAM The card is jammed. Operator intervention is
required. A possible scenario is also when an
attempt to retain the card was made during
attempts to eject it. The retain bin is full; no
more cards can be retained. The current card
is still in the device.

WEFS_ERR IDC SHUTTERFAIL The open of the shutter failed due to
manipulation or hardware error. Operator
intervention is required.

WFS ERR IDC NOMEDIA No card is present.

WFS _ERR IDC MEDIARETAINED The card has been retained during attempts
to eject it. The device is clear and can be
used.

In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Page 27
CWA 15748-4:2008

Value Meaning

WEFS_SRVE IDC MEDIAREMOVED The card has been taken by the user.
WFS USRE IDC RETAINBINTHRESHOLD The retain bin reached a threshold value.

Comments This is a fundamental capability of an ID card unit; thus if an eject request is received by a device
with no eject capability, the WFS ERR _UNSUPP_COMMAND error is returned.

Page 28

CWA 15748-4:2008

5.4 WFS_CMD_IDC_RETAIN_CARD

Description

Input Param

Output Param

Error Codes

Events

Comments

The card is removed from its present position (card inserted into device, card entering, unknown
position) and stored in the retain bin; applicable to motor-driven card readers only. The ID card
unit sends an event, if the storage capacity of the retain bin is reached. If the storage capacity has
already been reached, and the command cannot be executed, an error is returned and the card
remains in its present position.

None.
LPWFSIDCRETAINCARD IpRetainCard,

typedef struct wfs idc_retain card

USHORT usCount;
WORD fwPosition;
} WEFSIDCRETAINCARD, *LPWFSIDCRETAINCARD;

usCount
Total number of ID cards retained up to and including this operation, since the last
WFS CMD IDC RESET COUNT command was executed.

fwPosition
Position of card; only relevant if card could not be retained. Possible positions:

Value Meaning

WEFS IDC_MEDIAUNKNOWN The position of the card can not be
determined with the device in its current
state.

WEFS IDC_MEDIAPRESENT The card is present in the reader.

WFS IDC_MEDIAENTERING The card is in the entering position (shutter).

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC MEDIAJAM The card is jammed. Operator intervention is
required.

WFS ERR IDC NOMEDIA No card has been inserted. The fwPosition

parameter has the value
WFS IDC_MEDIAUNKNOWN.

WEFS _ERR IDC RETAINBINFULL The retain bin is full; no more cards can be
retained. The current card is still in the
device.

WFS _ERR IDC SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error. Operator
intervention is required.

In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning

WFS USRE IDC RETAINBINTHRESHOLD The retain bin reached a threshold value.
WEFS_SRVE IDC MEDIAREMOVED The card has been taken by the user.
WFS_EXEE IDC MEDIARETAINED The card has been retained.

This is a fundamental capability of an ID card unit; thus if a retain request is received by a device
with no retain capability, the WFS_ERR UNSUPP_COMMAND error is returned.

Page 29
CWA 15748-4:2008

5.5 WFS_CMD_IDC_RESET_COUNT

Description

Input Param
Output Param
Error Codes

Events

Comments

This function resets the present value for number of cards retained to zero. The function is
possible for motor-driven card readers only.

The number of cards retained is controlled by the service and can be requested before resetting via
the WFS_INF IDC _STATUS.

None.
None.
Only the generic error codes defined in [Ref. 1] can be generated by this command.

In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WEFS USRE IDC RETAINBINTHRESHOLD The retain bin was emptied.

This is a fundamental capability of an ID card unit; thus if this request is received by a device
with no retain capability, the WFS_ERR UNSUPP_COMMAND error is returned.

Page 30

CWA 15748-4:2008

5.6 WFS_CMD_IDC_SETKEY

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used for setting the DES key that is necessary for operating a CIM86 module.
The command must be executed before the first read command is issued to the card reader.

LPWFSIDCSETKEY IpSetkey;

typedef struct wfs_idc_setkey

{

USHORT usKeyLen;
LPBYTE lpbKeyValue;
} WESIDCSETKEY, *LPWFSIDCSETKEY ;
usKeyLen
Specifies the length of the following key value.
IpbKeyValue

Pointer to a byte array containing the CIM86 DES key. This key is supplied by the vendor of the
CIM86 module.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC INVALIDKEY The key does not fit to the security module.
Only the generic events defined in [Ref. 1] can be generated by this command.

None.

Page 31
CWA 15748-4:2008

5.7 WFS_CMD_IDC_READ_RAW_DATA

Description

Input Param

For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, all
specified tracks are read immediately. If reading the chip is requested, the chip will be contacted
and reset and the ATR (Answer To Reset) data will be read. When this command completes the
chip will be in contacted position. This command can also be used for an explicit cold reset of a
previously contacted chip.

This command should only be used for user cards and should not be used for permanently
connected chips.

If no card has been inserted, and for all other categories of card readers, the ID card unit waits for
the period of time specified in the WFSExecute call for a card to be either inserted or pulled
through. The next step is trying to read all tracks specified.

The WFS_EXEE IDC INSERTCARD event will be generated when there is no card in the card
reader and the device is ready to accept a card.

Magnetic stripe track data is converted from its 5 or 7 bit character form to 8 bit ASCII form. The
parity bit from each 5 or 7 bit magnetic stripe character is discarded. Start and end sentinel
characters are not returned to the application. Field separator characters are returned to the
application, and are also converted to 8 bit ASCII form.

In addition to that, a security check via a security module (i.e. MM, CIM86) can be requested. If
the security check fails however this should not stop valid data being returned. The error

WFS _ERR IDC SECURITYFAIL will be returned if the command specifies only security data
to be read and the security check could not be executed, in all other cases WFS_SUCCESS will
be returned with the [pbData field of the output parameter set to the relevant value including
WFS IDC SEC_ HWERROR.

For non-motorized Card Readers which read track data on card exit, the
WFS_ERR INVALID DATA error code is returned when a call to
WFS _CMD IDC READ RAW DATA is made to read both track data and chip data.

If the card unit is a latched dip unit then the device will latch the card when the chip card will be
read, i.e. WFS_IDC _CHIP is specified (see below). The card will remain latched until a call to
WEFS_CMD_IDC _EJECT CARD is made.

LPWORD IpwReadData;

IpwReadData

If [pwReadData points to a zero value any previously ejected card will be moved back inside the
device and no data will be returned. Otherwise, [pwReadData specifies the data that should be
read as a combination of the following flags:

Value Meaning

WFS IDC_TRACKI1 Track 1 of the magnetic stripe will be read.
WEFS IDC_TRACK2 Track 2 of the magnetic stripe will be read.
WEFS IDC _TRACK3 Track 3 of the magnetic stripe will be read.
WES IDC_CHIP The chip will be read.

WEFS IDC SECURITY A security check will be performed.
WES_IDC FLUXINACTIVE If the IDC Flux Sensor is programmable it

will be disabled in order to allow chip data to
be read on cards which have no magnetic

stripes.
WEFS IDC TRACK WM The Swedish Watermark track will be read.
WEFS IDC_ MEMORY_CHIP The memory chip will be read.
WEFS IDC FRONT TRACK 1 Track 1 data is read from the magnetic stripe

located on the front of the card. In some
countries this track is known as JIS II track.

WEFS IDC FRONTIMAGE The front image of the card will be read in
BMP format.

WEFS IDC BACKIMAGE The back image of the card will be read in
BMP format.

Output Param LPWFSIDCCARDDATA *IppCardData;

Page 32
CWA 15748-4:2008

IppCardData

Pointer to a NULL terminated array of pointers to card data structures or if no data has been

requested [ppCardData will be NULL:

typedef struct _wfs_idc_card data

{

WORD wDataSource;
WORD wStatus;
ULONG ulDatalength;
LPBYTE lpbData;

WORD fwWriteMethod;

} WFSIDCCARDDATA, *LPWFSIDCCARDDATA;

wDataSource

Specifies the source of the card data as one of the following flags:

Value

Meaning

WFS_IDC_TRACK]1
WFS_IDC_TRACK2
WFS_IDC_TRACK3
WFS_IDC_CHIP
WFS_IDC_SECURITY
WFS_IDC_TRACK_WM

WEFS _IDC_ MEMORY CHIP

WFS_IDC_FRONT TRACK 1

WFS_IDC_FRONTIMAGE

WEFS_IDC BACKIMAGE

IpbData contains data read from track 1.
IpbData contains data read from track 2.
IpbData contains data read from track 3.
IpbData contains ATR data read from the
chip.

IpbData contains the value returned by the
security module.

IpbData contains data read from the Swedish
Watermark track.

IpbData contains Memory Card
Identification data read from the memory
chip.

IpbData contains data read from the front
track 1. In some countries this track is
known as JIS II track.

IpbData contains a null-terminated string
containing the full path and file name of the
BMP image file for the front of the card.
IpbData contains a null-terminated string
containing the full path and file name of the
BMP image file for the back of the card.

wStatus
Status of reading the card data. Possible values are:
Value Meaning
WFS IDC DATAOK The data is OK.

WES_IDC DATAMISSING
WFS_IDC _DATAINVALID

WFS_IDC_DATATOOLONG
WFS_IDC_DATATOOSHORT

WES IDC DATASRCNOTSUPP

The track/chip/memory chip is blank.

The data contained on the
track/chip/memory chip is invalid. This will
typically be returned when I[pbData reports
WFS IDC_SEC BADREADLEVEL or
WFS IDC_SEC DATAINVAL.

The data contained on the
track/chip/memory chip is too long.

The data contained on the
track/chip/memory chip is too short.

The data source to read from is not
supported by the Service Provider.

Error Codes

Page 33
CWA 15748-4:2008

WEFS_IDC DATASRCMISSING The data source to read from is missing on
the card, or is unable to be read due to a
hardware problem, or the module has not
been initialized. For example, this will be
returned on a request to read a Memory Card
and the customer has entered a magnetic
card without associated memory chip. This
will also be reported when IpbData reports
WES_IDC_SEC NODATA,
WEFS_IDC_SEC NOINIT or
WEFS_IDC_SEC_HWERROR. This will also
be reported when the image reader could not
create a BMP file due to the state of the
image reader or due to a failure.

ulDataLength
Specifies the length of the following field [pbData.

IpbData
Points to the data read from the track/chip, the value returned by the security module or a null-
terminated string containing the full path and file name of the BMP image file.

The security module can return one of the following values:

Value Meaning

WEFS IDC_SEC READLEVELI1 The security data readability level is 1.

WES IDC SEC READLEVEL2 The security data readability level is 2.

WES IDC SEC READLEVELS3 The security data readability level is 3.

WES IDC SEC READLEVEL4 The security data readability level is 4.

WES IDC SEC READLEVELS The security data readability level is 5.

WES IDC SEC BADREADLEVEL The security data reading quality is not
acceptable.

WFS IDC SEC NODATA There are no security data on the card.

WEFS IDC SEC DATAINVAL The validation of the security data with the
specific data on the magnetic stripe was not
successful.

WES IDC SEC_ HWERROR The security module could not be used,
because of a hardware error.

WEFS IDC SEC NOINIT The security module could not be used,

because it was not initialized (e.g. CIM key
is not loaded).

The memory card returns the memory card protocol used to communicate with the card in the first
WORD of the buffer, with the actual data following the protocol WORD. See
IpwMemoryChipProtocols from WFS _INF IDC CAPABILITIES for a description of possible
memory card protocols.

JwWriteMethod
Ignored for this command.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC MEDIAJAM The card is jammed. Operator intervention is
required.

WFS _ERR IDC SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error. Operator
intervention is required.

WFS ERR IDC NOMEDIA The card was removed before completion of
the read action (the event
WFS_EXEE IDC_MEDIAINSERTED has
been generated). For motor driven devices,
the read is disabled; i.e. another command
has to be issued to enable the reader for card
entry.

Page 34
CWA 15748-4:2008

WEFS _ERR IDC INVALIDMEDIA No track or chip found; card may have been
inserted or pulled through the wrong way.

WFS ERR IDC CARDTOOSHORT The card that was inserted is too short. When
this error occurs the card remains at the exit
slot.

WFS_ERR IDC CARDTOOLONG The card that was inserted is too long. When
this error occurs the card remains at the exit
slot.

WEFS _ERR IDC SECURITYFAIL The security module failed reading the cards
security sign.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS _EXEE IDC MEDIAINSERTED This event is generated when a card is

detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being read.

WFS SRVE IDC MEDIAREMOVED This event is generated when a card is
removed before completion of a read
operation.

WFS EXEE IDC INVALIDMEDIA The user is attempting to insert the media in

the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

WEFS_EXEE IDC INSERTCARD Device is ready to accept a card from the
user.

Comments None.

Page 35
CWA 15748-4:2008

5.8 WFS_CMD_IDC_WRITE_RAW_DATA

Description

Input Param

For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the
data is written to the tracks.

If no card has been inserted, and for all other categories of devices, the ID card unit waits for the
period of time specified in the WFSExecute call for a card to be either inserted or pulled through.
The next step is writing the data to the respective tracks.

The WFS_EXEE IDC INSERTCARD event will be generated when there is no card in the card
reader and the device is ready to accept a card.

The application must pass the magnetic stripe data in ASCII without any sentinels. The data will
be converted by the Service Provider (ref WFS_ CMD _IDC READ RAW_DATA). If the data
passed in is too long the WFS _ERR INVALID DATA error code will be returned.

This procedure is followed by data verification.

If power fails during a write the outcome of the operation will be vendor specific, there is no
guarantee that the write will have succeeded.

LPWFSIDCCARDDATA *lppCardData;

Pointer to a NULL terminated array of pointers to card data structures:

typedef struct _wfs_idc_card data

WORD wDataSource;
WORD wStatus;
ULONG ulDatalLength;
LPBYTE lpbData;

WORD fwWriteMethod;

} WFSIDCCARDDATA, *LPWFSIDCCARDDATA;

wDataSource
Specifies the source of the card data as one of the following flags:

Value Meaning

WEFS IDC_TRACKI1 IpbData contains the data to be written to
track 1.

WEFS IDC_TRACK2 IpbData contains the data to be written to
track 2.

WFS IDC _TRACK3 IpbData contains the data to be written to
track 3.

WEFS IDC FRONT TRACK 1 IpbData contains the data to be written to the

front track 1. In some countries this track is
known as JIS II track.

wStatus
This parameter is ignored by this command.

ulDataLength
Specifies the length of the following field lpbData.
IpbData
Points to the data to be written to the track.
fwWriteMethod
Indicates whether a loco or hico magnetic stripe is being written.
Value Meaning
WEFS IDC LOCO Low coercivity magnetic stripe is being
written.
WEFS_IDC_HICO High coercivity magnetic stripe is being
written.
WEFS IDC_AUTO Service Provider will determine whether low

or high coercivity stripe is to be written.

Output Param None.

Page 36

CWA 15748-4:2008

Error Codes

Events

Comments

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning
WFS _ERR IDC MEDIAJAM The card is jammed. Operator intervention is
required.

WEFS_ERR IDC SHUTTERFAIL

WFS_ERR_IDC_NOMEDIA

WEFS _ERR IDC INVALIDMEDIA
WEFS_ERR IDC WRITE METHOD

WEFS _ERR IDC CARDTOOSHORT

WFS_ERR_IDC_CARDTOOLONG

The open of the shutter failed due to
manipulation or hardware error. Operator
intervention is required.

The card was removed before completion of
the write action (the event
WFS_EXEE IDC MEDIAINSERTED has
been generated). For motor driven devices,
the write is disabled; i.e. another command
has to be issued to enable the reader for card
entry.

No track found; card may have been inserted
or pulled through the wrong way.

The fwWriteMethod value is inconsistent
with device capabilities.

The card that was inserted is too short. When
this error occurs the card remains at the exit
slot.

The card that was inserted is too long. When
this error occurs the card remains at the exit
slot.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value

Meaning

WFS _EXEE IDC MEDIAINSERTED

WEFS_SRVE IDC MEDIAREMOVED

WFS_EXEE IDC INVALIDMEDIA

WEFS_EXEE IDC INSERTCARD

This event is generated when a card is
detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being written.
This event is generated when a card is
removed before completion of a write
operation.

The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

Device is ready to accept a card from the
user.

This is a fundamental capability of an ID card unit; thus if a write request is received by a device
with no write capability, the WFS ERR_UNSUPP_COMMAND error is returned.

Page 37
CWA 15748-4:2008

59 WFS_CMD_IDC_CHIP_IO

Description

Input Param

Output Param

Error Codes

Events

This command is used to communicate with the chip. Transparent data is sent from the
application to the chip and the response of the chip is returned transparently to the application.

The ATR of the chip must be obtained before issuing this command. The ATR for a user card or
the Memory Card Identification (when available) must initially be obtained through

WFS CMD IDC READ RAW DATA. The ATR for subsequent resets of a user card can be
obtained either through WFS CMD IDC READ RAW DATA command or through

WFS CMD IDC CHIP POWER. The ATR for permanent connected chips is always obtained
through WFS_CMD_IDC_CHIP_POWER.

LPWEFSIDCCHIPIO IpChiploln;

typedef struct wfs idc_chip io

WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;

} WFSIDCCHIPIO, *LPWFSIDCCHIPIO;

wChipProtocol

Identifies the protocol that is used to communicate with the chip. Possible values are those
described in WFS_INF _IDC_CAPABILITIES. This field is ignored in communications with
Memory Cards. The Service Provider knows which memory card type is currently inserted and
therefore there is no need for the application to manage this.

ulChipDataLength
Specifies the length of the following field [pbChipData.

IpbChipData
Points to the data sent to the chip.

LPWFSIDCCHIPIO IpChiploOut;

typedef struct wfs idc_chip io

WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;

} WFSIDCCHIPIO, *LPWFSIDCCHIPIO;

wChipProtocol

Identifies the protocol that is used to communicate with the chip. This field contains the same
value as the corresponding field in the input structure. This field should be ignored in Memory
Card dialogs and will contain WFS_IDC NOTSUPP when returned for any Memory Card dialog.

ulChipDataLength
Specifies the length of the following field lpbChipData.

IpbChipData
Points to the data responded from the chip.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC MEDIAJAM The card is jammed. Operator intervention is
required.

WFS_ERR IDC NOMEDIA There is no card inside the device.

WFS ERR IDC INVALIDMEDIA No chip found; card may have been inserted
the wrong way.

WFS ERR IDC INVALIDDATA An error occurred while communicating with
the chip.

WFS_ERR IDC PROTOCOLNOTSUPP The protocol used was not supported by the
Service Provider.

WFS _ERR IDC ATRNOTOBTAINED The ATR has not been obtained.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

Page 38
CWA 15748-4:2008

command:

Value

Meaning

WEFS_SRVE IDC MEDIAREMOVED

Comments None.

This event is generated when a card is
removed before completion of an operation.

Page 39
CWA 15748-4:2008

5.10 WFS_CMD_IDC_RESET

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used by the application to perform a hardware reset which will attempt to return
the IDC device to a known good state. This command does not over-ride a lock obtained by
another application or service handle.

If the device is a user ID card unit, the device will attempt to either retain, eject or will perform no
action on any user cards found in the IDC as specified in the [pwResetIn parameter. It may not
always be possible to retain or eject the items as specified because of hardware problems. If a user
card is found inside the device the WFS _SRVE IDC MEDIADETECTED event will inform the
application where card was actually moved to. If no action is specified the user card will not be
moved even if this means that the IDC cannot be recovered.

If the device is a permanent chip card unit, this command will power-off the chip.
LPWORD IpwResetIn;

Specifies the action to be performed on any user card found within the ID card unit as one of the
following values:

Value Meaning

WEFS IDC _EJECT Eject any card found.

WEFS IDC_RETAIN Retain any card found.

WEFS_IDC_NOACTION No action should be performed on any card
found.

If [pwResetIn is NULL the Service Provider will determine where to move any card found.
None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC MEDIAJAM The card is jammed. Operator intervention is
required.

WFS _ERR IDC SHUTTERFAIL The device is unable to open and close its
shutter.

WEFS_ERR IDC RETAINBINFULL The retain bin is full; no more cards can be
retained. The current card is still in the
device.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WEFS_SRVE IDC MEDIADETECTED This event is generated when a media is
detected during a reset.

WEFS_SRVE IDC MEDIAREMOVED The card has been taken by the user.

WEFS USRE IDC RETAINBINTHRESHOLD The retain bin reached a threshold value.

None.

Page 40

CWA 15748-4:2008

5.11 WFS_CMD_IDC_CHIP_POWER

Description

Input Param

Output Param

Error Codes

Events

Comments

This command handles the power actions that can be done on the chip.

For user chips, this command is only used after the chip has been contacted for the first time using
the WFS CMD IDC READ RAW DATA command.

For permanently connected chip cards, this command is the only way to control the chip power.
LPWORD lpwChipPower;

IpwChipPower
Specifies the action to perform as one of the following flags:

Value Meaning

WEFS IDC_CHIPPOWERCOLD The chip is powered on and reset (Cold
Reset).

WEFS IDC_CHIPPOWERWARM The chip is reset (Warm Reset).

WEFS IDC_CHIPPOWEROFF The chip is powered off.

NULL or LPWFSIDCCHIPPOWEROUT IpChipPowerOut;

typedef struct _wfs_idc chip power out

ULONG ulChipDataLength;
LPBYTE lpbChipData;
} WEFSIDCCHIPPOWEROUT, *LPWFSIDCCHIPPOWEROUT;

ulChipDataLength
Specifies the length of the following field [pbChipData.

IpbChipData
Points to the ATR data responded from the chip. NULL if the action was not a power on.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR IDC CHIPPOWERNOTSUPP The specified action is not supported by the
hardware device.

WFS _ERR IDC MEDIAJAM The card is jammed. Operator intervention is
required.

WFS ERR IDC NOMEDIA There is no card inside the device.

WFS ERR IDC INVALIDMEDIA No chip found; card may have been inserted
or pulled through the wrong way.

WFS _ERR IDC INVALIDDATA An error occurred while communicating with
the chip.

WFS _ERR IDC ATRNOTOBTAINED The ATR has not been obtained (only

applies to user chips).

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WEFS_SRVE IDC MEDIAREMOVED This event is generated when a card is
removed before completion of the operation.

The NULL return value for the output parameter is provided for backwards compatibility and is
only valid for user cards. Permanent chips must return the ATR in the output parameter. User
cards should return the ATR in the output parameter.

Page 41
CWA 15748-4:2008

5.12 WFS_CMD_IDC_PARSE_DATA

Description

Input Param

Output Param

Error Codes

Events

Comments

This command takes form name and the output of a successful
WFS _CMD IDC READ RAW_ DATA command and returns the parsed string.

LPWFSIDCPARSEDATA lpParseData;

typedef struct wfs_idc parse_ data

{

LPSTR lpstrFormName ;
LPWFSIDCCARDDATA *1lppCardData;
} WESIDCPARSEDATA, *LPWFSIDCPARSEDATA;

IpstrFormName
Points to the name of the form that defines the behavior for the reading of tracks (see Section 7,
Form Description).

IppCardData
Points to a NULL terminated array of pointers to card data structures, as returned from the
WFS CMD IDC READ RAW DATA command.

LPSTR IpstrTrackData;

IpstrTrackData
Points to the data read successfully from the selected tracks (and value of security module if
available).

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC INVALIDDATA The read operation specified by the forms
definition could not be completed
successfully due to invalid or incomplete
track data being passed in. This is returned if
none of the tracks in an ‘or’ (|) operation is
contained in the [ppCardData array or if any
track in an ‘and’ (&) operation is not found
in the input. One execute event
(WFS_EXEE IDC INVALIDTRACKDAT
A) is generated for each specified track
which could not be parsed successfully. See
the form description for the rules defining
how tracks are specified.

WFS ERR IDC FORMNOTFOUND The specified form can not be found.

WFS_ERR IDC FORMINVALID The specified form definition is invalid (e.g.
syntax error).

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS _EXEE IDC INVALIDTRACKDATA One event is generated for each blank track
(no data) or invalid track (either data error
reading the track or the data does not
conform to the specified form definition).

The track data is preceded by the keyword for the track, separated by a “:’. The field data is
always preceded by the corresponding keyword, separated by a ‘=". The fields are separated by
0x00. The data of the different tracks is separated by an additional 0x00. The end of the buffer is
marked by another additional 0x00 (see example below). Data encoding is defined in Section 7,
Form Definition.

Example of lpstrTrackData:
TRACK2:ALL=47.\0\0TRACK3:MII=59\0PAN=500..\0\0\0

Page 42

CWA 15748-4:2008

5.13 WFS_CMD_IDC_SET_GUIDANCE_LIGHT

Description

Input Param

This command is used to set the status of the IDC guidance lights. This includes defining the flash
rate and the color. When an application tries to use a color that is not supported then the Service
Provider will return the generic error WFS_ ERR_UNSUPP DATA.

LPWFSIDCSETGUIDLIGHT IpSetGuidLight;
typedef struct wfs idc_set guidlight

WORD wGuidLight;

DWORD dwCommand ;

} WFSIDCSETGUIDLIGHT, *LPWFSIDCSETGUIDLIGHT;
wGuidLight

Specifies the index of the guidance light to set as one of the values defined within the capabilities
section.

dwCommand

Specifies the state of the guidance light indicator as WFS IDC _GUIDANCE OFF or a
combination of the following flags consisting of one type B, and optionally one type C. If no
value of type C is specified then the default color is used. The Service Provider determines which
color is used as the default color.

Value Meaning Type

WEFS IDC _GUIDANCE OFF The light indicator is turned off. A

WEFS IDC _GUIDANCE SLOW_FLASH The light indicator is set to flash B
slowly.

WEFS IDC_GUIDANCE MEDIUM FLASH The light indicator is set to flash B
medium frequency.
WFS IDC_GUIDANCE QUICK FLASH The light indicator is set to flash B

quickly.

WFS IDC_GUIDANCE_ CONTINUOUS The light indicator is turned on B
continuously (steady).

WES IDC_GUIDANCE RED The light indicator color is set C
to red.

WEFS IDC_GUIDANCE GREEN The light indicator color is set C
to green.

WEFS IDC_GUIDANCE YELLOW The light indicator color is set C
to yellow.

WEFS IDC _GUIDANCE BLUE The light indicator color is set C
to blue.

WES IDC_GUIDANCE CYAN The light indicator color is set C
to cyan.

WEFS IDC _GUIDANCE MAGENTA The light indicator color is set C
to magenta.

WEFS IDC _GUIDANCE WHITE The light indicator color is set C
to white.

Output Param None.

Error Codes

Events

Comments

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR IDC INVALID PORT An attempt to set a guidance light to a new
value was invalid because the guidance light
does not exist.

Only the generic events defined in [Ref. 1] can be generated by this command:

Guidance light support was added into the IDC primarily to support guidance lights for
workstations where more than one instance of an IDC is present. The original SIU guidance light
mechanism was not able to manage guidance lights for workstations with multiple IDCs. This
command can also be used to set the status of the IDC guidance lights when only one instance of
an IDC is present.

Page 43
CWA 15748-4:2008

5.14 WFS_CMD_IDC_POWER_SAVE_CONTROL

Description This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

Input Param LPWFSIDCPOWERSAVECONTROL IpPowerSaveControl;

typedef struct wfs idc_power save control

USHORT usMaxPowerSaveRecoveryTime;
} WFSIDCPOWERSAVECONTROL, *LPWFSIDCPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime

Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power save mode. The device will be set to the highest
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero
then the device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR IDC POWERSAVETOOSHORT The power saving mode has not been
activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

WFS_ERR IDC POWERSAVEMEDIAPRESENT
The power saving mode has not been
activated because media is present inside the

device.
Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning

WFS SRVE IDC POWER SAVE CHANGE The power save recovery time has changed.

Comments None.

Page 44

CWA 15748-4:2008

6. Events

6.1 WFS_EXEE_IDC_INVALIDTRACKDATA

Description

Event Param

Comments

This execute event specifies that a track contained invalid or no data.

LPWFSIDCTRACKEVENT IpTrackEvent;

typedef struct wfs idc_track event

WORD fwStatus;
LPSTR lpstrTrack;
LPSTR lpstrData;
} WEFSIDCTRACKEVENT, *LPWFSIDCTRACKEVENT;
fwStatus
Status of reading the track. Possible values are:
Value Meaning
WEFS IDC DATAMISSING The track is blank.
WEFS IDC DATAINVALID The data contained on the track is invalid.
WES IDC DATATOOLONG The data contained on the track is too long.
WEFS _IDC_DATATOOSHORT The data contained on the track is too short.
IpstrTrack

Points to the keyword of the track on which the error occurred.

IpstrData
Points to the data that could be read (that may be only a fragment of the track), terminated by a
null character. This data is simply a stream of characters; it does not contain keywords.

None.

Page 45
CWA 15748-4:2008

6.2 WFS_EXEE_IDC_MEDIAINSERTED

Description This execute event specifies that a card was inserted into the device.

Event Param None.

Comments None.

Page 46
CWA 15748-4:2008

6.3 WFS_SRVE_IDC_MEDIAREMOVED

Description This service event specifies that the inserted card was manually removed by the user during the
processing of a read/write command, during the processing of a chip_io/power command, during
or after a retain/reset operation, after an eject operation or after the card is removed by the user in
a latched dip card unit.

Event Param None.

Comments None.

Page 47
CWA 15748-4:2008

6.4 WFS_EXEE_IDC_MEDIARETAINED

Description This service event specifies that the card was retained.
Event Param None.

Comments None.

Page 48
CWA 15748-4:2008

6.5 WFS_EXEE_IDC_INVALIDMEDIA

Description This execute event specifies that the media the user is attempting to insert is not a valid card or it
is a card but it is in the wrong orientation.

Event Param None.

Comments None.

Page 49
CWA 15748-4:2008

6.6 WFS_SRVE_IDC_CARDACTION

Description

Event Param

Comments

This service event specifies that a card has been retained or ejected by either the automatic power
on or power off action of the device.

LPWFSIDCCARDACT IpCardAct;

typedef struct wfs_idc card_act

{

WORD wAction;
WORD wPosition;
} WFSIDCCARDACT, *LPWFSIDCCARDACT;

wAction
Specifies which action has been performed with the card. Possible values are:

Value Meaning
WES IDC_CARDRETAINED The card has been retained.
WFS IDC CARDEJECTED The card has been ejected.
WFS IDC CARDREADPOSITION The card has been moved to the read
position.
wPosition

Position of card before being retained or ejected. Possible values are:

Value Meaning
WES IDC_MEDIAUNKNOWN The position of the card can not be
determined.
WEFS IDC_MEDIAPRESENT The card was present in the reader.
WEFS IDC MEDIAENTERING The card was entering the reader.
None.

Page 50

CWA 15748-4:2008

6.7 WFS_USRE_IDC_RETAINBINTHRESHOLD

Description

Event Param

Comments

This user event specifies that the retain bin holding the retained cards has reached a threshold

condition or the threshold condition is removed.

LPWORD IpfwRetainBin;

IpfwRetainBin
Specifies the state of the ID card unit retain bin as one of the following values:
Value Meaning
WES IDC RETAINBINOK The retain bin of the ID card unit was
emptied.

WFS _IDC_RETAINBINFULL
WFS_IDC_RETAINBINHIGH

None.

The retain bin of the ID card unit is full.
The retain bin of the ID card unit is nearly
full.

Page 51
CWA 15748-4:2008

6.8 WFS_SRVE_IDC_MEDIADETECTED

Description

Event Param

Comments

This service event is generated if media is detected during a reset (WFS_CMD _IDC_RESET).
The parameter on the event informs the application of the position of the card on the completion
of the reset.

LPWORD IpwResetOut;

IpwResetOut
Specifies the action that was performed on any card found within the IDC as one of the following
values:

Value Meaning

WEFS IDC CARDEJECTED The card was ejected.

WEFS IDC_CARDRETAINED The card was retained.

WEFS IDC_CARDREADPOSITION The card is in read position.

WEFS IDC_CARDJAMMED The card is jammed in the device.
None.

Page 52
CWA 15748-4:2008

6.9 WFS_SRVE_IDC_RETAINBINREMOVED

Description This event specifies that the retain bin has been removed.
Event Param None.

Comments None.

Page 53
CWA 15748-4:2008

6.10 WFS_SRVE_IDC_RETAINBININSERTED

Description This event specifies that the retain bin has been inserted.
Event Param None.

Comments None.

Page 54
CWA 15748-4:2008

6.11 WFS_EXEE_IDC_INSERTCARD

Description This mandatory event notifies the application when the device is ready for the user to insert a
card.

Event Param None.

Comments None.

Page 55
CWA 15748-4:2008

6.12 WFS_SRVE_IDC_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSIDCDEVICEPOSITION IpDevicePosition;

typedef struct _wfs_ idc device position

{

WORD wPosition;
} WFSIDCDEVICEPOSITION, *LPWFSIDCDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning

WES IDC DEVICEINPOSITION The device is in its normal operating
position.

WEFS _IDC DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WEFS IDC_DEVICEPOSUNKNOWN The position of the device cannot be
determined.

Comments None.

Page 56
CWA 15748-4:2008

6.13 WFS_SRVE_IDC_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.
Event Param LPWFSIDCPOWERSAVECHANGE IpPowerSaveChange;

typedef struct _wfs_idc power save change

{

USHORT usPowerSaveRecoveryTime;
} WFSIDCPOWERSAVECHANGE, *LPWFSIDCPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments None.

Page 57
CWA 15748-4:2008

7. Form Description

This section describes the forms mechanism used to define the tracks to be read or written. Forms are contained in a
single file, with one section for each defined form. The name of each section is the form name parameter in the
WFS _CMD IDC READ TRACK and WFS_CMD_IDC WRITE TRACK commands.

The way to specify the location of a form file is vendor dependent.
As an example the following registry information can be used:

WOSA/XFS_ROOT
FORMS
IDCU
formfile=<path><filename>

The read form defines which tracks should be read in the WFS CMD IDC READ TRACK command and what
the response should be to a read failure. The read form can also be used to define logical track data, i.e. fields like
“account number”, “issuer identifier”, and their position within the physical track data. For example, the output
parameter of the WFS_ CMD IDC READ TRACK command with input parameter IpstrFormName =

READTRACK3GERMAN could look like (see example 1 below):

"TRACK3:MII=59\0COUNTRY=280\0ISSUERID=50050500\0ACCOUNT=1234567890\0LUHNT3=1\0EXPIR
ATION=9912\0SECURE=1\0\0\0"

The write form defines which track is to be written, the logical track data that is handed over in the
WFS CMD IDC WRITE TRACK command, and how the write data is to be converted to the physical data to be
written.

Reserved Keywords/Operands 1 Meaning

(]

Form name delimiters.

TRACKI1 Keyword to identify track 1.

TRACK2 Keyword to identify track 2.

TRACK3 Keyword to identify track 3.

FIELDSEPT1 Value of field separator of track 1.

FIELDSEPT2 Value of field separator of track 2.

FIELDSEPT3 Value of field separator of track 3.

READ Description of read action; the TRACKn
keywords are processed left to right.

WRITE Description of write action.

ALL Read or write the complete track.

SECURE Do the security check via the security
module (CIM86 or MM). This check is done
on Track 3 only.

& Read/write all tracks specified, abort reading
on read failure.

| Read/write at least one of the tracks
specified, continue reading on read failure.

FIELDSEPPOSn Position of the nth occurrence of field
separator on track. FIELDSEPPOSO
specifies the beginning of the data.

, Separator in a list of logical fields.

DEFAULT String for default substitution of track data to

! Attributes are not required in any mandatory order.

be written, that is not defined explicitly by
the form fields. DEFAULT also allows an
application to input fewer fields than those
defined by the form.

Page 58

CWA 15748-4:2008

? Reserved value for DEFAULT keyword:
substitute track data to write with its value
read before.

ENDTRACK Represents the end of the data. It is used to
identify fields positioned after the last field
separator.

Notes
The & and | operands may be combined in a single READ statement; for example:
e read track3 or track2, trying track3 first:
READ=TRACK3 | TRACK2
e read track 3 and at least one of track2 or trackl:
READ=TRACK3 & (TRACK2 | TRACKI1)
or:
READ=TRACK?2 | TRACKI1 & TRACK3
The keywords FIELDSEPPOS0 and ENDTRACK are used as follows:
e read the first 2 bytes of a track:
FIRST= FIELDSEPPOSO + 1, FIELDSEPPOSO0 + 2
e read the last 2 bytes of a track:
LAST=ENDTRACK -2, ENDTRACK — 1
Use of field separators in track layouts is to replace optional fields and terminate variable length
fields.
Write forms are designed for updating specific fields without altering the position of the field
separators.
The application may alter the position of the field separators by rewriting the card tracks (ALL
option or DEFAULT option with default track data).
It is valid to define a field that spans another field separator, e.g. FIELDSEPPOS1+1,
FIELDSEPPOS3+1 is valid as is FIELDSEPPOS3-4, FIELDSEPPOS3-1 where a field separator
(e.g. FIELDSEPPOS?2) lies within this range on the data read from the card. During a read track
the field separator is returned within the track data. During a write track the application must
ensure the correct number of field separators at the correct location with the correct spacing is
included in the data, otherwise a WFS_ERR _IDC DATASYNTAX error will be returned.
Example 1 Reading tracks:
[READTRACK3GERMAN]
/* field separator of track 3 */
FIELDSEPT3= =
/* only track 3 must be read */
READ= TRACK3
/* read logical fields as defined below; also check the security */
TRACK3= MII, COUNTRY, ISSUERID, ACCOUNT, LUHNT3, EXPIRATION, SECURE
MII= FIELDSEPPOSO + 3, FIELDSEPPOSO + 4
ISSUERID= FIELDSEPPOSO + 5, FIELDSEPPOS1 - 1
ACCOUNT= FIELDSEPPOS1 + 1, FIELDSEPPOS2 - 2
LUHNT3= FIELDSEPPOS2 - 1, FIELDSEPPOS2 - 1
COUNTRY= FIELDSEPPOS2 + 1, FIELDSEPPOS2 + 3
EXPIRATION= FIELDSEPPOS2 + 36, FIELDSEPPOS2 + 39
All tracks must be read (‘READ”), that is, the read fails if an error occurs on reading any one of
the tracks (the ‘&’ operand). The field “major industry identifier” (‘MII’) is located after the first
field separator (‘FIELDSEPPOS1’) and its length is two bytes. The “issuer identifier” field
(‘ISSUERID?) is located after the MII field, with a length of eight bytes. The next field, “account
number” (‘ACCOUNT”) is variable length; it ends before the luhn digit field (‘LUHNT3”) that is
the last digit in front of the second field separator (‘FIELDSEPPOS2’).
Example 2 Write a track:

[WRITETRACK3]
FIELDSEPT3= =

Example 3

Page 59
CWA 15748-4:2008

DEFAULT= ? /* fields not specified in the write form are to be left
unchanged, i1.e. read and the same data written back to them */
WRITE= TRACK3

TRACK3= RETRYCOUNT, DATE

RETRYCOUNT= FIELDSEPPOS2 + 22, FIELDSEPPOS2 + 22

DATE= FIELDSEPPOS5 + 1, FIELDSEPPOS5 + 4

Track 3 is to be written. In the example only the retry counter and the date of the last transaction
are updated, the other fields are unchanged.

A sample of input data to be used with this form is as follows:
RETRYCOUNT=3\0DATE=3132\00

Write a track:

[WRITETRACK3ALL]
WRITE= TRACK3
TRACK3= ALL

Track 3 is to be written. By specifying ALL, the data passed in the
WFS CMD IDC WRITE TRACK command is written to the physical track without formatting.

A sample of input data to be used with this form is as follows:

ALL=123456789123\0\0

Page 60

CWA 15748-4:2008
8. C-Header file

/**

* xfsidc.h XFS - Identification card unit
*

* Version 3.10 (29/11/2007)
*

*

#ifndef INC XFSIDC H

#define _ INC XFSIDC_ H

#ifdef cplusplus

extern "C" {

#endif

#include <xfsapi.h>

/* be aware of alignment */

#pragma pack (push, 1)

/* values of WFSIDCCAPS.wClass */

#define
#define
#define

#define
/* IDC Info

#define
#define
#define
#define
#define

WFS_SERVICE CLASS IDC
WFS_SERVICE_CLASS NAME_TIDC
WFS_SERVICE CLASS VERSION IDC

IDC_SERVICE_OFFSET
Commands */

WFS_INF_IDC_STATUS
WFS_INF_IDC_ CAPABILITIES
WFS_INF_IDC_FORM_LIST
WFS_INF_IDC_QUERY FORM
WFS_INF_IDC_QUERY_ IFM TIDENTIFIER

/* IDC Execute Commands */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_CMD_IDC_READ TRACK
WFS_CMD_IDC_WRITE TRACK
WFS_CMD_IDC_EJECT_ CARD
WFS_CMD_IDC_RETAIN CARD
WFS_CMD_IDC_RESET_ COUNT
WFS_CMD_IDC_ SETKEY
WFS_CMD_IDC_READ RAW_DATA
WFS_CMD_IDC_WRITE RAW DATA
WFS_CMD_IDC_CHIP_TO
WFS_CMD_IDC RESET
WFS_CMD_IDC_CHIP_ POWER
WFS_CMD_IDC_PARSE DATA
WFS_CMD_IDC_SET GUIDANCE_LIGHT
WFS_CMD_IDC_POWER SAVE CONTROL

/* IDC Messages */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_EXEE_IDC INVALIDTRACKDATA
WFS_EXEE_IDC MEDIAINSERTED
WFS_SRVE_IDC MEDIAREMOVED
WFS_SRVE_IDC CARDACTION
WFS_USRE_IDC RETAINBINTHRESHOLD
WFS_EXEE_IDC INVALIDMEDIA
WFS_EXEE_IDC MEDIARETAINED
WFS_SRVE_IDC MEDIADETECTED
WFS_SRVE_IDC RETAINBININSERTED
WFS_SRVE_IDC RETAINBINREMOVED
WFS_EXEE_IDC INSERTCARD
WFS_SRVE_IDC DEVICEPOSITION

(IDC)

definitions

(2)
n IDCI!
(0x0R03)

(WFS_SERVICE_CLASS IDC * 100)

(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET

(IDC_SERVICE OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET

(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET
(IDC_SERVICE_OFFSET
(IDC_SERVICE OFFSET

+ 4+ o+ o+ o+

+ 4+ + o+ o+ o+ o+

+ 4+ + o+ o+ o+ o+ o+ o+

khkkhkhkkhkhkhkdkhkhkdhkhkdhkhhkhkdhkhkdhhhbhkhkdrhhbhkdhhkdhhkdrhkdhrhdrkhhhkdhkrkdbrhkdrhdrkdhrkdhkrkdrhkdxrhdxk

/* Version 3.10 */

1)
2)
3)
4)
5)

Page 61
CWA 15748-4:2008

#define WFS_SRVE_TIDC_POWER_SAVE_CHANGE (IDC_SERVICE_OFFSET + 14)

/* values of WFSIDCSTATUS.fwDevice */

#define WFS_IDC DEVONLINE WFS_STAT DEVONLINE
#define WFS_IDC DEVOFFLINE WFS_STAT DEVOFFLINE
#define WFS_IDC DEVPOWEROFF WFS_STAT DEVPOWEROFF
#define WFS_IDC DEVNODEVICE WFS_STAT DEVNODEVICE
#define WFS_IDC DEVHWERROR WFS_STAT DEVHWERROR
#define WFS_IDC DEVUSERERROR WFS_STAT DEVUSERERROR
#define WFS_IDC DEVBUSY WFS_STAT DEVBUSY

#define WFS_IDC DEVFRAUDATTEMPT WFS_STAT DEVFRAUDATTEMPT

/* values of WFSIDCSTATUS.fwMedia, WFSIDCRETAINCARD.fwPosition, */
/* WFSIDCCARDACT.fwPosition */

#define WFS_IDC_MEDIAPRESENT (1)
#define WFS_IDC_MEDIANOTPRESENT (2)
#define WFS_IDC_MEDIAJAMMED (3)
#define WFS_IDC_MEDIANOTSUPP (4)
#define WFS_IDC_MEDTAUNKNOWN (5)
#define WFS_IDC_MEDIAENTERING (6)
#define WFS_IDC_MEDIALATCHED (7)

/* values of WFSIDCSTATUS.fwRetainBin */

#define WFS_IDC_RETAINBINOK (1)
#define WFS_IDC_RETATNNOTSUPP (2)
#define WFS_IDC_RETAINBINFULL (3)
#define WFS_IDC_RETATNBINHIGH (4)
#define WFS_IDC_RETAINBINMISSING (5)

/* values of WFSIDCSTATUS.fwSecurity */

#define WFS_IDC_ SECNOTSUPP (1)
#define WFS_IDC SECNOTREADY (2)
#define WFS_IDC_SECOPEN (3)

/* values of WFSIDCSTATUS.fwChipPower */

#define WFS_IDC_CHIPONLINE (0)

#define WFS_IDC_CHIPPOWEREDOFF (1)

#define WFS_IDC_CHIPBUSY (2)

#define WFS_IDC_CHIPNODEVICE (3)

#define WFS_IDC_CHIPHWERROR (4)

#define WFS_IDC_CHIPNOCARD (5)

#define WFS_IDC_CHIPNOTSUPP (6)

#define WFS_IDC_CHIPUNKNOWN (7)

/* Size and max index of dwGuidLights array */

#define WFS_IDC GUIDLIGHTS SIZE (32)

#define WFS_IDC_GUIDLIGHTS MAX (WFS_IDC GUIDLIGHTS SIZE - 1)

/* Indices of WFSIDCSTATUS.dwGuidLights [...]
WFSIDCCAPS.dwGuidLights [...]

*/

#define WFS_IDC_GUIDANCE CARDUNIT (0)

/* Values of WFSIDCSTATUS.dwGuidLights [...]
WFSIDCCAPS.dwGuidLights [...]

*/

#define WFS_IDC_GUIDANCE NOT AVAILABLE (0x00000000)

#define WFS_IDC_GUIDANCE OFF (0x00000001)

#define WFS_IDC_GUIDANCE ON (0x00000002)

#define WFS_IDC_GUIDANCE SLOW_ FLASH (0x00000004)

#define WFS_IDC_GUIDANCE MEDIUM FLASH (0x00000008)

#define WFS_IDC_GUIDANCE QUICK FLASH (0x00000010)

#define WFS_IDC_GUIDANCE CONTINUOQUS (0x00000080)

#define WFS_IDC_GUIDANCE RED (0x00000100)

#define WFS_IDC_GUIDANCE GREEN (0x00000200)

Page 62
CWA 15748-4:2008

#define WFS_IDC GUIDANCE YELLOW (0x00000400)
#define WFS_IDC GUIDANCE BLUE (0x00000800)
#define WFS_IDC GUIDANCE CYAN (0x00001000)
#define WFS_ IDC GUIDANCE MAGENTA (0x00002000)
#define WFS _IDC GUIDANCE WHITE (0x00004000)

/* values of WFSIDCSTATUS.fwChipModule */

#define WFS_IDC CHIPMODOK (1)
#define WFS_IDC_CHIPMODINOP (2)
#define WFS_ IDC CHIPMODUNKNOWN (3)
#define WFS_IDC CHIPMODNOTSUPP (4)
/* values of WFSIDCSTATUS.fwMagReadModule and
WFSIDCSTATUS. fwMagWriteModule */
#define WFS_IDC MAGMODOK (1)
#define WFS_IDC_MAGMODINOP (2)
#define WFS_ IDC MAGMODUNKNOWN (3)
#define WFS_IDC_MAGMODNOTSUPP (4)
/* values of WFSIDCSTATUS.fwFrontImageModule and
WFSIDCSTATUS. fwBackImageModule */
#define WFS_IDC_IMGMODOK (1)
#define WFS_IDC IMGMODINOP (2)
#define WFS_IDC_IMGMODUNKNOWN (3)
#define WFS IDC IMGMODNOTSUPP (4)
/* values of WFSIDCSTATUS.wDevicePosition
WFSIDCDEVICEPOSITION.wPosition */
#define WFS_IDC_DEVICEINPOSITION (0)
#define WFS IDC DEVICENOTINPOSITION (1)
#define WFS_IDC_DEVICEPOSUNKNOWN (2)
#define WFS IDC DEVICEPOSNOTSUPP (3)
/* values of WFSIDCCAPS.fwType */
#define WFS_IDC TYPEMOTOR (1)
#define WFS_IDC_TYPESWIPE (2)
#define WFS _IDC TYPEDIP (3)
#define WFS_IDC_ TYPECONTACTLESS (4)
#define WFS IDC TYPELATCHEDDIP (5)
#define WFS_IDC_TYPEPERMANENT (6)
/* values of WFSIDCCAPS.fwReadTracks,
WEFSIDCCAPS.fwWriteTracks,
WEFSIDCCARDDATA.wDataSource,
WFSIDCCAPS. fwChipProtocols,
WFSIDCCAPSfwiWriteMode,
WFSIDCCAPS. fwChipPower */
#define WEFS_ IDC_NOTSUPP 0x0000

/* values of WFSIDCCAPS.fwReadTracks, WFSIDCCAPS.fwWriteTracks,
WFSIDCCARDDATA.wDataSource,
WFS_CMD IDC READ RAW DATA */

#define WEFS IDC_TRACK1 0x0001
#define WFS_IDC TRACK2 0x0002
#define WEFS_ IDC_ TRACK3 0x0004
#define WFS_IDC FRONT_ TRACK 1 0x0080

urther values o .wDataSource (except
/* furth 1 f WFSIDCCARDDATA.wDatas (
WFS_IDC FLUXINACTIVE), WFS_CMD IDC READ RAW DATA */

#define WEFS_ IDC CHIP 0x0008

#define
#define
#define
#define
#define
#define

/* values
#define
#define
#define
/* values
#define

#define
#define

/* values of WFSIDCCAPS.fwPowerOnOption, WFSIDCCAPS.fwPowerOffOption*/

#define
#define
#define
#define
#define

/* values of WFSIDCCAPS.fwWriteMode; WFSIDCWRITETRACK.fwWriteMethod,

WFS_IDC_SECURITY
WFS_IDC_FLUXINACTIVE
WFS_IDC_TRACK WM
WFS_IDC_MEMORY CHIP
WFS_IDC_FRONTIMAGE
WFS_IDC_BACKIMAGE

of WFSIDCCAPS.fwChipProtocols */

WFS_IDC_CHIPTO
WFS_IDC_CHIPT1
WFS_IDC_CHIP PROTOCOL NOT REQUIRED

of WFSIDCCAPS.fwSecType */

WFS_IDC _SECNOTSUPP
WFS_IDC SECMMBOX
WFS_IDC_SECCIM86

WFS_IDC_NOACTION
WFS_IDC_EJECT
WFS_IDC_RETATN
WFS_IDC_EJECTTHENRETAIN
WFS_IDC_READPOSTTION

WFSIDCCARDDATA. fwWriteMethod */

/* Note:
#define
#define
#define

/* values

#define
#define
#define

/* values

#define
#define
#define
#define

/* values

#define
#define

/* values

#define
#define

/* values

#define
#define
#define
#define
#define
#define
#define

/* values

WFS_IDC UNKNOWN was removed as it was an invalid value */

WFS_IDC_LOCO
WFS_IDC_HICO
WFS_IDC_AUTO

of WFSIDCCAPS.fwChipPower */
WFS IDC CHIPPOWERCOLD
WFS_ IDC_CHIPPOWERWARM
WFS IDC CHIPPOWEROFF

of WFSIDCCAPS.fwDIPMode */
WFS_IDC_DIP_ UNKNOWN
WFS_IDC DIP EXIT
WFS_IDC_DIP_ ENTRY
WFS_IDC DIP ENTRY EXIT

of WFSIDCCAPS. lpwMemoryChipProtocols

WFS_IDC_MEM_ STEMENS4442
WFS_IDC_MEM GPM896

of WFSIDCFORM.fwAction */

WFS_IDC_ACTIONREAD
WFS_IDC ACTIONWRITE

of WFSIDCTRACKEVENT.fwStatus, WFSIDCCARDDATA.wStatus */

WFS_IDC_DATAOK
WFS_IDC_DATAMISSING
WFS_IDC_DATAINVALID
WFS_IDC_DATATOOLONG
WFS_IDC_DATATOOSHORT
WFS_IDC_DATASRCNOTSUPP
WFS_IDC_DATASRCMISSING

WFSIDCCARDACT.wAction */

0x0010
0x0020
0x8000
0x0040
0x0100
0x0200

0x0001
0x0002
0x0004

(1)

(3)

0x0002
0x0004
0x0008

0x0002
0x0004
0x0008

0x0001
0x0002
0x0004
0x0008

*/

0x0001
0x0002

0x0001
0x0002

~ e~~~ o~~~

0
1
2
3
4
5
6

Page 63
CWA 15748-4:2008

Page 64

CWA 15748-4:2008

#define
#define
#define
#define

/* values of WFSIDCCARDDATA.lpbData i1f security is

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_ IDC CARDRETAINED
WFS_IDC CARDEJECTED

WFS IDC CARDREADPOSITION
WFS_IDC CARDJAMMED

WFS_IDC_SEC_READLEVEL1
WFS_IDC_SEC_READLEVEL2
WFS_IDC_SEC_ READLEVEL3
WFS_IDC_SEC_READLEVEL4
WFS_IDC_SEC_READLEVELS
WFS_IDC_SEC_BADREADLEVEL
WFS_IDC_SEC_ NODATA
WFS_IDC_SEC_DATATNVAL
WFS_IDC_SEC_HWERROR
WFS_IDC_SEC_NOINTT

read */

tq
l2l
13
l4l
15
l6l
r7
l8l
191
IAI

/* values of WFSIDCIFMIDENTIFIER.wIFMAuthority */

#define
#define
#define
#define

WFS_IDC_TIFMEMV
WFS_IDC_IFMEUROPAY
WFS_IDC_IFMVISA
WFS_IDC_IFMGIECB

/* values WFSIDCCAPS.fwEjectPosition, WFSIDCEJECTCARD.wEjectPosition */

#define WFS IDC EXITPOSITION (0x0001)
#define WFS_IDC_TRANSPORTPOSITION (0x0002)
/* WOSA/XFS IDC Errors */
#define WFS ERR IDC MEDIAJAM (- (IDC_SERVICE OFFSET
#define WFS ERR IDC NOMEDIA (- (IDC_SERVICE OFFSET
#define WFS ERR IDC MEDIARETAINED (- (IDC_SERVICE OFFSET
#define WFS ERR IDC RETAINBINFULL (- (IDC_SERVICE OFFSET
#define WFS ERR IDC_ INVALIDDATA (- (IDC_SERVICE OFFSET
#define WFS_ERR IDC INVALIDMEDIA (- (IDC_SERVICE OFFSET
#define WFS ERR IDC_FORMNOTFOUND (- (IDC_SERVICE OFFSET
#define WFS_ERR_ IDC FORMINVALID (- (IDC_SERVICE OFFSET
#define WFS ERR IDC DATASYNTAX (- (IDC_SERVICE OFFSET
#define WFS_ERR_IDC SHUTTERFAIL (- (IDC_SERVICE OFFSET
#define WFS ERR IDC SECURITYFAIL (- (IDC_SERVICE OFFSET
#define WFS_ERR_IDC PROTOCOLNOTSUPP (- (IDC_SERVICE OFFSET
#define WFS _ERR IDC ATRNOTOBTAINED (- (IDC_SERVICE OFFSET
#define WFS_ERR IDC INVALIDKEY (- (IDC_SERVICE OFFSET
#define WFS ERR IDC WRITE METHOD (- (IDC_SERVICE OFFSET
#define WFS_ERR IDC CHIPPOWERNOTSUPP (- (IDC_SERVICE OFFSET
#define WFS_ERR IDC CARDTOOSHORT (- (IDC_SERVICE OFFSET
#define WFS ERR IDC_CARDTOOLONG (- (IDC_SERVICE OFFSET
#define WFS ERR_IDC INVALID PORT (- (IDC_SERVICE OFFSET
#define WFS ERR IDC_ POWERSAVETOOSHORT (- (IDC_SERVICE OFFSET
#define WFS_ERR IDC POWERSAVEMEDIAPRESENT (- (IDC_SERVICE OFFSET
/*===*/
/* IDC Info Command Structures and variables */
/*===*/
typedef struct wfs idc_status
{

WORD fwDevice;

WORD fwMedia;

WORD fwRetainBin;

WORD fwSecurity;

USHORT usCards;

WORD fwChipPower;

LPSTR lpszExtra;

DWORD deuidLightS[WFS_IDC_GUIDLIGHTS_SIZE];

WORD fwChipModule;

WORD fwMagReadModule;

R T S S S T e S T S S S S S S S S S S

WORD fwMagWriteModule;

WORD fwFrontImageModule;
WORD fwBackImageModule;

WORD wDevicePosition;

USHORT usPowerSaveRecoveryTime;

} WFSIDCSTATUS, *LPWFSIDCSTATUS;

typedef struct wfs idc caps

WORD wClass;

WORD fwType;

BOOL bCompound;

WORD fwReadTracks;

WORD fwiWriteTracks;

WORD fwChipProtocols;

USHORT usCards;

WORD fwSecType;

WORD fwPowerOnOption;

WORD fwPowerOffOption;

BOOL bFluxSensorProgrammable;

BOOL bReadWriteAccessFollowingEject;
WORD fwiWriteMode;

WORD fwChipPower;

LPSTR lpszExtra;

WORD fwDIPMode;

LPWORD lpwMemoryChipProtocols;

DWORD deuidLightS[WFS_IDC_GUIDLIGHTS_SIZE];
WORD fwEjectPosition;

BOOL bPowerSaveControl;

} WFSIDCCAPS, *LPWFSIDCCAPS;

typedef struct wfs idc form

LPSTR lpszFormName ;

CHAR cFieldSeparatorTrackl;
CHAR cFieldSeparatorTrack?2;
CHAR cFieldSeparatorTrack3;
WORD fwAction;

LPSTR lpszTracks;

BOOL bSecure;

LPSTR lpszTracklFields;
LPSTR lpszTrack2Fields;
LPSTR lpszTrack3Fields;

} WFSIDCFORM, *LPWFSIDCFORM;

typedef struct wfs idc ifm identifier

{

WORD wIFMAuthority;
LPSTR lpszIFMIdentifier;
} WFSIDCIFMIDENTIFIER, *LPWFSIDCIFMIDENTIFIER;

typedef struct _wfs_idc_write_track

LPSTR lpstrFormName;
LPSTR lpstrTrackData;
WORD fwiWriteMethod;

} WFSIDCWRITETRACK, *LPWFSIDCWRITETRACK;

typedef struct wfs idc retain card
USHORT usCount;
WORD fwPosition;

} WFSIDCRETAINCARD, *LPWFSIDCRETAINCARD;

typedef struct wfs idc_ setkey

Page 65
CWA 15748-4:2008

Page 66
CWA 15748-4:2008

USHORT usKeyLen;
LPBYTE lpbKeyValue;
} WFSIDCSETKEY, *LPWFSIDCSETKEY;

typedef struct _wfs_idc_card data

WORD wDataSource;
WORD wStatus;
ULONG ulDatalLength;
LPBYTE lpbData;

WORD fwWriteMethod;

} WFSIDCCARDDATA, *LPWFSIDCCARDDATA;

typedef struct wfs idc_chip io

WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;

} WFSIDCCHIPIO, *LPWFSIDCCHIPIO;

typedef struct wfs idc chip power out

{

ULONG ulChipDataLength;
LPBYTE lpbChipData;
} WFSIDCCHIPPOWEROUT, *LPWFSIDCCHIPPOWEROUT;
typedef struct wfs idc parse data
LPSTR lpstrFormName;
LPWFSIDCCARDDATA *1lppCardData;
} WFSIDCPARSEDATA, *LPWFSIDCPARSEDATA;
typedef struct wfs idc set guidlight
WORD wGuidLight;
DWORD dwCommand ;
} WFSIDCSETGUIDLIGHT, *LPWFSIDCSETGUIDLIGHT;

typedef struct wfs idc eject card

WORD wEjectPosition;
} WEFSIDCEJECTCARD, *LPWFSIDCEJECTCARD;

typedef struct wfs idc power save control

USHORT usMaxPowerSaveRecoveryTime;
} WFSIDCPOWERSAVECONTROL, *LPWFSIDCPOWERSAVECONTROL;

typedef struct wfs idc_track event

{

WORD fwStatus;
LPSTR lpstrTrack;
LPSTR lpstrData;

} WFSIDCTRACKEVENT, *LPWFSIDCTRACKEVENT;
typedef struct wfs idc card act
WORD wAction;
WORD wPosition;
} WEFSIDCCARDACT, *LPWFSIDCCARDACT;

typedef struct wfs idc device position

WORD wPosition;
} WEFSIDCDEVICEPOSITION, *LPWFSIDCDEVICEPOSITION;

typedef struct _wfs_ idc power save change

USHORT usPowerSaveRecoveryTime;
} WFSIDCPOWERSAVECHANGE, *LPWFSIDCPOWERSAVECHANGE;

/* restore alignment */
#pragma pack (pop)

#ifdef cplusplus
} /*extern "C"*/

#endif

#endif /* _ INC XFSIDC H */

Page 67
CWA 15748-4:2008

